【總結(jié)】本節(jié)介紹幾種特殊的高階方程,它們的共同特點是經(jīng)過適當?shù)淖兞看鷵Q可將其化成較低階的方程來求解。可降階的高階微分方程前面介紹了五種標準類型的一階方程及其求解方法,但是能用初等解法求解的方程為數(shù)腥當有限,特別是高階方程,除去一些特殊情況可用降階法求解,一般都沒有初等解法,以二階方程
2025-05-14 21:59
【總結(jié)】1第三章二階及高階微分方程可降階的高階方程線性齊次常系數(shù)方程線性非齊次常系數(shù)方程的待定系數(shù)法高階微分方程的應(yīng)用線性微分方程的基本理論2前一章介紹了一些一階微分方程的解法,在實際的應(yīng)用中,還會遇到高階的微分方程,在這一章,我們討論二階及二階以上的微分方程,即高階微分方程的
2025-04-29 06:42
【總結(jié)】本章重點講述:A線性微分方程的基本理論;B常系數(shù)線性方程的解法;C某些高階方程的降階和二階方程的冪級數(shù)解法。對于二階及二階以上的微分方程的解包括基本理論和求解方法。這部分內(nèi)容有兩部分:1、線性微分方程(組):在第四、五章討論
2024-10-19 17:11
【總結(jié)】第五節(jié)可降階的高階微分方程)()(xfyn?解法:??2)2(dCxyn??????xd??依次通過n次積分,可得含n個任意常數(shù)的通解.21CxC??型的微分方程一、例1.解:??12dcose
2025-04-21 03:56
【總結(jié)】Chapter2(2)偏導(dǎo)數(shù)與高階偏導(dǎo)數(shù)返回一.偏導(dǎo)數(shù)二.高階偏導(dǎo)數(shù)三.偏導(dǎo)數(shù)在經(jīng)濟分析中的應(yīng)用偏導(dǎo)數(shù)與高階偏導(dǎo)數(shù)目的要求:一.理解多元函數(shù)的偏導(dǎo)數(shù)的概念二.熟練掌握求一階和二階偏導(dǎo)數(shù)的方法重點:一.一階、二階偏導(dǎo)數(shù)計算三.熟練掌握偏導(dǎo)數(shù)
2025-01-14 07:37
【總結(jié)】二、高階導(dǎo)數(shù)的運算法則第三節(jié)一、高階導(dǎo)數(shù)的概念機動目錄上頁下頁返回結(jié)束高階導(dǎo)數(shù)與隱函數(shù)的導(dǎo)數(shù)第二章三、隱函數(shù)求導(dǎo)一、高階導(dǎo)數(shù)的概念速度即sv??加速度即)(???sa引例:變速直線運動機動目錄上頁下頁返回
2025-05-12 21:33
【總結(jié)】第二節(jié)偏導(dǎo)數(shù)與高階偏導(dǎo)數(shù)?一、偏導(dǎo)數(shù)的定義及其計算法?二、高階偏導(dǎo)數(shù)定義設(shè)函數(shù)),(yxfz?在點),(00yx的某一鄰域內(nèi)有定義,當y固定在0y而x在0x處有增量x?時,相應(yīng)地函數(shù)有增量),(),(0000yxfyxxf?
2025-05-07 22:29
【總結(jié)】1高階導(dǎo)數(shù)的定義萊布尼茨(Leibniz)公式小結(jié)思考題作業(yè)§高階導(dǎo)數(shù)第二章導(dǎo)數(shù)與微分幾個基本初等函數(shù)的n階導(dǎo)數(shù)2問題:變速直線運動的加速度.),(tss?設(shè))()(tstv??則瞬時速度為是加速度a???)(ta定義)()(xfxf?的導(dǎo)數(shù)如果函數(shù)
2025-01-17 09:00
【總結(jié)】河海大學(xué)理學(xué)院《高等數(shù)學(xué)》高等數(shù)學(xué)(上)河海大學(xué)理學(xué)院《高等數(shù)學(xué)》第二章導(dǎo)數(shù)與微分高等數(shù)學(xué)(上)河海大學(xué)理學(xué)院《高等數(shù)學(xué)》問題:變速直線運動的加速度.),(tfs?設(shè))()(tftv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tftv
2025-05-07 12:10
【總結(jié)】高等院校非數(shù)學(xué)類本科數(shù)學(xué)課程——一元微積分學(xué)大學(xué)數(shù)學(xué)(一)第十七講高階導(dǎo)數(shù)腳本編寫、教案制作:劉楚中彭亞新鄧愛珍劉開宇孟益民第四章一元函數(shù)的導(dǎo)數(shù)與微分本章學(xué)習(xí)要求:?理解導(dǎo)數(shù)和微分的概念。熟悉導(dǎo)數(shù)的幾何意義以及函數(shù)的可導(dǎo)、可微、連續(xù)之間的關(guān)系。
2025-07-24 04:04
【總結(jié)】第四節(jié)高階導(dǎo)數(shù)一、高階導(dǎo)數(shù)的定義二、高階導(dǎo)數(shù)求法舉例性一、高階導(dǎo)數(shù)的定義問題:變速直線運動的加速度.),(tfs?設(shè))()(tftv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tftvta定義.)())((,)()(lim))((,)()(0處的二階導(dǎo)數(shù)在
2025-07-21 03:08
【總結(jié)】第四節(jié)高階導(dǎo)數(shù)引例:變速直線運動),(tss?)()(tstv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tstvta定義.)())((,)()(lim))((,)()(0處的二階導(dǎo)數(shù)在點為函數(shù)則稱存在即處可導(dǎo)在點的導(dǎo)數(shù)如果函數(shù)xxfxfxxfxxfxf
2025-04-21 04:25
【總結(jié)】§3.高階導(dǎo)數(shù)函數(shù)f(x)的導(dǎo)數(shù)f'(x)又稱為f(x)的一階導(dǎo)數(shù)(導(dǎo)函數(shù)),仍可導(dǎo),若)(xf?存在,即xxfxxfx????????)()(lim0則稱其為y=f(x)的二階導(dǎo)數(shù),記為,)(,xfy?????22xdyd或.)(xd
2025-05-05 08:14
【總結(jié)】設(shè)y=f(x),若y=f(x)可導(dǎo),則f'(x)是x的函數(shù).若f'(x)仍可導(dǎo),則可求f'(x)的導(dǎo)數(shù).記作(f'(x))'=f''(x).稱為f(x)的二階導(dǎo)數(shù).若f''(x)仍可導(dǎo),則又可求f''(x)的導(dǎo)數(shù),….
2025-05-05 12:38
【總結(jié)】1高階導(dǎo)數(shù)第三節(jié)一、高階導(dǎo)數(shù)的定義二、高階導(dǎo)數(shù)求法舉例三、小結(jié)及作業(yè)2一、高階導(dǎo)數(shù)的定義問題:變速直線運動的加速度.),(tss?設(shè)).()(tstv??則瞬時速度為的變化率,對時間是速度因為加速度tva定義.)())((,)()(lim))((,)()(處的二階導(dǎo)數(shù)在點為則稱存在即處可