【總結】第十九講:一階微分方程、可降階微分方程的練習題答案一、單項選擇題(每小題4分,共24分)1.微分方程是(B)A.一階線性方程B.一階齊次方程C.可分離變量方程D.二階微分方程解:變形原方程是一階齊次方程,選B2.下列微分方程中,是可分離變量的方程是(C)A.
2025-01-14 03:34
【總結】本科畢業(yè)論文(設計)題目:高階微分方程的解法及應用哈爾濱學院本科畢業(yè)論文(設計)畢業(yè)論文(設計)原創(chuàng)性聲明本人所呈交的畢業(yè)論文(設計)是我在導師的指導下進行的研究工作及取得的研究成果。據(jù)我所知,除文中已經(jīng)注明引用的內(nèi)容外,本論文(設計)不包含其他個人已經(jīng)發(fā)表或撰寫過的研究成果。對本論文(設計)的研究做出重要貢
2025-06-18 15:28
【總結】本科畢業(yè)論文(設計)題目:高階微分方程的解法及應用哈爾濱學院本科畢業(yè)論文(設計)畢業(yè)論文(設計)原創(chuàng)性聲明本人所呈交的畢業(yè)論文(設計)是我在導師的指導下進行的研究工作及取得的研究成果。據(jù)我所知,除文中已經(jīng)注明引用的內(nèi)容外,本論文(設計)不包含其他
2025-04-03 01:36
【總結】YANGZHOUUNIVERSITY二階微分方程的機動目錄上頁下頁返回結束習題課(二)二、微分方程的應用解法及應用一、兩類二階微分方程的解法第十二章YANGZHOUUNIVERSITY一、兩類二階微分方程的解法1.可降階微分方程的解法—
2024-10-17 20:12
【總結】YANGZHOUUNIVERSITY一階微分方程的機動目錄上頁下頁返回結束習題課(一)一、一階微分方程求解二、解微分方程應用問題解法及應用第十二章YANGZHOUUNIVERSITY一、一階微分方程求解1.一階標準類型方程求解關鍵
2025-07-17 23:41
【總結】第八節(jié)高階線性微分方程一、概念的引入例:設有一彈簧下掛一重物,如果使物體具有一個初始速度00?v,物體便離開平衡位置,并在平衡位置附近作上下振動.試確定物體的振動規(guī)律)(txx?.解受力分析;.1cxf??恢復力;.2dtdxR???阻力xxo,maF??,22dtdxcx
2024-10-17 00:48
【總結】§8.高階導數(shù)與高階微分YunnanUniversity1一、高階導數(shù)及其運算法則,其速度物體運動規(guī)律)(tss?.lim)(0tstsvt???????一階導數(shù)).())(()(lim)(0tststvtvtat?????????????時間內(nèi)在t?于是,212gts?自由落
2025-05-14 22:24
【總結】河海大學理學院《高等數(shù)學》高等數(shù)學(下)河海大學理學院《高等數(shù)學》第七章常微分方程高等數(shù)學(上)河海大學理學院《高等數(shù)學》第四節(jié)高階線性微分方程河海大學理學院《高等數(shù)學》一、概念的引入例:設有一彈簧下掛一重物,如果使物體具有一個初始速度00?v,物體
2025-05-07 12:10
【總結】目錄上頁下頁返回結束一階微分方程的習題課(一)一、一階微分方程求解二、解微分方程應用問題解法及應用第七章目錄上頁下頁返回結束一、一階微分方程求解1.一階標準類型方程求解關鍵:辨別方程類型,掌握求解步驟2.一階
2024-11-03 16:13
【總結】目錄上頁下頁返回結束§一階隱式微分方程一階顯式微分方程),(yxfy??一階隱式微分方程0),,(??yyxF()能從上式中解出,y?就可以化成顯式方程。例1求解微分方程.0)()(2????xydxdyyxdxdy目錄上頁下頁返回
2024-10-19 17:11
【總結】目錄上頁下頁返回結束一、一階微分方程求解1.一階標準類型方程求解關鍵:辨別方程類型,掌握求解步驟2.一階非標準類型方程求解(1)變量代換法——代換自變量代換因變量代換某組合式(2)積分因子法——選積分因子,解全微分方程四個標準類型
【總結】目錄上頁下頁返回結束高階線性微分方程第六節(jié)二、線性齊次方程解的結構三、線性非齊次方程解的結構一、二階線性微分方程舉例第七章目錄上頁下頁返回結束一、二階線性微分方程舉例當重力與彈性力抵消時,物體處于平衡狀態(tài),例1.質(zhì)量為
2025-05-09 02:16
【總結】第四節(jié)一階線性微分方程教學目的:使學生掌握一階線性微分方程的解法,了解伯努利方程的解法教學重點:一階線性微分方程教學過程:一、一階線性微分方程方程叫做一階線性微分方程.如果Q(x)o0,則方程稱為齊次線性方程,否則方程稱為非齊次線性方程.方程叫做對應于非齊次線性方程的齊次線性方程.
2025-08-22 06:00
【總結】例1一曲線通過點(1,2),且在該曲線上任一點),(yxM處的切線的斜率為x2,求這曲線的方程.解)(xyy?設所求曲線為xdxdy2???xdxy22,1??yx時其中,2Cxy??即,1?C求得.12??xy所求曲線方程為一、問題的提出微分方程:凡含有未知函數(shù)的導數(shù)或微分的方程叫
2024-12-08 03:00
【總結】第四節(jié)一階線性微分方程一階線性微分方程標準形式:)()(ddxQyxPxy??若Q(x)?0,0)(dd??yxPxy若Q(x)?0,稱為非齊次方程.1.解齊次方程分離變量兩邊積分得CxxPylnd)(ln????故通解為xxPCyd)(e???稱為齊次方程
2025-07-22 11:17