【總結(jié)】北師大版選修2-1第三章橢圓與雙曲線的離心率1、教材分析本節(jié)課是北師大版高中數(shù)學(xué)選修2-1第三章小專題橢圓與雙曲線的離心率。橢圓與雙曲線的離心率是本章的重點內(nèi)容,在學(xué)習(xí)本節(jié)知識前,學(xué)生已經(jīng)了解橢圓與雙曲線的概念、方程、基本性質(zhì)。求解橢圓、雙曲線的離心率是重點內(nèi)容。靈活運用求解橢圓、雙曲線的離心率得幾種常用方法是本節(jié)的難點。2、學(xué)情分析本節(jié)是圓錐曲線與方程這
2025-04-17 04:22
【總結(jié)】......圓錐曲線離心率專題訓(xùn)練 1.已知F1,F(xiàn)2是橢圓的兩個焦點,若橢圓上存在點P,使得PF1⊥PF2,則橢圓離心率的取值范圍是( ?。.[,1)B.[,1)C.(0,]D.
2025-03-25 00:04
【總結(jié)】第九章 圓錐曲線的離心率問題解析幾何圓錐曲線的離心率問題離心率是圓錐曲線的一個重要幾何性質(zhì),一方面刻畫了橢圓,雙曲線的形狀,另一方面也體現(xiàn)了參數(shù)之間的聯(lián)系。一、基礎(chǔ)知識:1、離心率公式:(其中為圓錐曲線的半焦距)(1)橢圓:(2)雙曲線:2、圓錐曲線中的幾
【總結(jié)】......求離心率的取值范圍策略圓錐曲線共同的性質(zhì):圓錐曲線上的點到一個定點F和到一條定直線L(F不在定直線L上)的距離之比是一個常數(shù)e。橢圓的離心率,雙曲線的離心率,拋物線的離心率。求橢圓與雙曲線離心率的范圍是圓錐曲線這一章的重點題型。下面從幾個方面淺談如何確定橢圓、雙曲線離心率e的范圍。一、利用曲線的范圍,建立不等關(guān)系
2025-03-25 05:12
【總結(jié)】第1頁共9頁探究圓錐曲線中離心率的問題離心率是圓錐曲線中的一個重要的幾何性質(zhì),在高考中頻繁出現(xiàn),下面給同學(xué)們介紹常用的四種解法。一、直接求出a、c,求解e已知標(biāo)準方程或a、c易求時,可利用離心率公式來求解。ace?例1.過雙曲線C:的左頂點A作斜率為1的直線,若與雙曲線M的兩條漸)0b(1yx2???l近線分別相交于點
2025-03-25 02:38
【總結(jié)】方法總結(jié)求解圓錐曲線離心率的取值范圍求圓錐曲線離心率的取值范圍是高考的一個熱點,也是一個難點,求離心率的難點在于如何建立不等關(guān)系定離心率的取值范圍.一、直接根據(jù)題意建立不等關(guān)系求解.例1:(2008湖南)若雙曲線(a>0,b>0)上橫坐標(biāo)為的點到右焦點的距離大于它到左準線的距離,則雙曲線離心率的取值范圍是A.(1,2) B.(2,+) C.(1,5)
2025-08-05 08:31
【總結(jié)】雙曲線方程及離心率練習(xí)題1.已知雙曲線過點,則雙曲線的離心率為()A.B.C.D.2.雙曲線的離心率為,則的值為()A.1B.-1C.D.22.已知雙曲線:(,)的一條漸近線為,圓:與交于,兩點,若是等腰直角三角形,且(其中為坐標(biāo)原點),則雙曲線的離心率為()
2025-03-24 23:28
【總結(jié)】......求橢圓離心率范圍的常見題型解析解題關(guān)鍵:挖掘題中的隱含條件,構(gòu)造關(guān)于離心率e的不等式.一、利用曲線的范圍,建立不等關(guān)系例1已知橢圓右頂為A,點P在橢圓上,O為坐標(biāo)原點,且OP垂直于PA,求橢圓的離心率e
【總結(jié)】......第30練 雙曲線的漸近線和離心率問題[題型分析·高考展望] 雙曲線作為圓錐曲線三大題型之一,也是高考熱點,其性質(zhì)是考查的重點,,也會在填空題中考查,、用法是此類問題的解題之本.??碱}型精析題型一 雙曲線的漸
【總結(jié)】橢圓的離心率專題訓(xùn)練一.選擇題(共29小題)1.橢圓的左右焦點分別為F1,F(xiàn)2,若橢圓C上恰好有6個不同的點P,使得△F1F2P為等腰三角形,則橢圓C的離心率的取值范圍是( ?。〢. B. C. D. 2.在區(qū)間[1,5]和[2,4]分別取一個數(shù),記為a,b,則方程表示焦點在x軸上且離心率小于的橢圓的概率為( ?。〢. B. C. D. 3.已知橢圓(a>b>0)上一點A
2025-04-17 04:41
【總結(jié)】圓錐曲線中離心率取值范圍的求解范圍問題是數(shù)學(xué)中的一大類問題,在高考試題中占有很大的比重,圓錐曲線中離心率取值范圍問題也是高考中解析幾何試題的一個倍受青睞的考查點,其求解策略的關(guān)鍵是建立目標(biāo)的不等式,建立不等式的方法一般有:利用曲線定義,曲線的幾何性質(zhì),題設(shè)指定條件等.策略一:利用曲線的定義例1若雙曲線橫坐標(biāo)為的點到右焦點的距離大于它到左準線的距離,則雙曲線的離心率的取值范圍是
2025-08-05 04:26
【總結(jié)】......學(xué)習(xí)參考圓錐曲線中離心率及其范圍的求解專題【高考要求】1.熟練掌握三種圓錐曲線的定義、標(biāo)準方程、幾何性質(zhì),并靈活運用它們解決相關(guān)的問題。2.掌握解析幾何中有關(guān)離心率及其范圍等問題的求解策略;3.靈
2025-03-25 00:03
【總結(jié)】由橢圓離心率求法探討最大角的應(yīng)用例:設(shè)橢圓xaybab222210????()的左、右焦點分別為FF12、,如果橢圓上存在點P,使???FPF1290,求離心率e的取值范圍。常見解法有:解法1:利用曲線范圍設(shè)P(x,y),又知FcFc1200(,),(,)?,則
2024-11-19 23:15
【總結(jié)】函數(shù)定義域一、定義域是函數(shù)y=f(x)中的自變量x的范圍。求函數(shù)的定義域需要從這幾個方面入手:(1)分母不為零(2)偶次根式的被開方數(shù)非負。(3)對數(shù)中的真數(shù)部分大于0。(4)指數(shù)、對數(shù)的底數(shù)大于0,且不等于1(5)y=tanx中x≠kπ+π/2;y=cotx中x≠kπ等等。(6)中x例1求下列函數(shù)的定義域:①;②;
2025-06-16 04:14
【總結(jié)】函數(shù)定義域、值域求法總結(jié)(一)求函數(shù)定義域1、函數(shù)定義域是函數(shù)自變量的取值的集合,一般要求用集合或區(qū)間來表示;2、常見題型是由解析式求定義域,此時要認清自變量,其次要考查自變量所在位置,位置決定了自變量的范圍,最后將求定義域問題化歸為解不等式組的問題;3、如前所述,實際問題中的函數(shù)定義域除了受解析式限制外,還受實際意義限制,如時間變量一般取非負數(shù),等等;4、對復(fù)合函數(shù)y=
2025-04-16 23:38