【導(dǎo)讀】所以圓是中心對稱圖形。仍與原來的圓重合。由此可以看出,點N'仍落在圓上。如圖中所示,NON'就是一個圓心角。下面我們一起來觀察一下圓心角與它所對的弦、弧有什么關(guān)系?∴半徑OB與OA重合,此時,稱作兩條圓弧相等。上面的結(jié)論,在兩個等圓中也成立。的圓心角定理,應(yīng)先證明什么相等?∴∠AOB=∠BOC=∠COD=∠DOA=90º則每一份這樣的弧叫做1º的弧.
【總結(jié)】垂徑定理第1課時垂徑定理1.(4分)如圖,在⊙O中,OC⊥弦AB于點C,AB=4,OC=1,則OB的長是()A.3B.5C.15D.17B2.(4分)如圖,AB是⊙O的直徑,弦CD⊥AB于點E,
2025-07-18 18:26
【總結(jié)】義務(wù)教育課程標準實驗教科書浙江版《數(shù)學(xué)》九年級上冊定理:垂直于弦的直徑平分弦,并且平分弦所對的兩條弧.●OABCDM└CD⊥AB,如圖∵CD是直徑,∴AM=BM,⌒⌒AC=BC,⌒⌒AD=BD.條件①CD為直徑②CD⊥AB
2024-11-27 23:42
【總結(jié)】創(chuàng)設(shè)情境,引入新課復(fù)習(xí)提問:(2)正三角形是軸對稱性圖形嗎?(1)什么是軸對稱圖形(3)圓是否為軸對稱圖形?如果是,它的對稱軸是什么?你能找到多少條對稱軸?如果一個圖形沿著一條直線對折,兩側(cè)的圖形能完全重合,這個圖形就是軸對稱圖形。有幾條對稱軸?是3在白紙上任意作一個圓和這個
【總結(jié)】圓的對稱性復(fù)習(xí)提問:1、什么是軸對稱圖形?我們在學(xué)過哪些軸對稱圖形?如果一個圖形沿一條直線對折,直線兩旁的部分能夠互相重合,那么這個圖形叫軸對稱圖形。如線段、角、等腰三角形、矩形、菱形、等腰梯形、正方形2、我們所學(xué)的圓是不是軸對稱圖形呢?.圓的對稱性圓是軸對稱圖形嗎?如果是,它的對稱軸是什么?你能
2024-10-18 06:59
【總結(jié)】圓的對稱性第二課時九年級數(shù)下學(xué)期北師大版1、圓是對稱圖形嗎?它有哪些對稱性。回顧:圓既是軸對稱圖形,又是中心對稱圖形.2、能否用手中的圓演示出它的各種對稱性呢?圓的對稱軸在哪里,對稱中心在哪里?OO'兩個圓有什么特點?●O用旋轉(zhuǎn)的方法可以得到:一個圓繞著它的圓
2024-11-06 23:20
【總結(jié)】圓的對稱性(二)白銀十中李再義教學(xué)目標:(1)理解圓的旋轉(zhuǎn)不變性,掌握圓心角、弧、弦、弦心距之間關(guān)系定理推論及應(yīng)用;(2)培養(yǎng)學(xué)生實驗、觀察、發(fā)現(xiàn)新問題,探究和解決問題的能力;(3)通過教學(xué)內(nèi)容向?qū)W生滲透事物之間可相互轉(zhuǎn)化的辯證唯物主義教育,滲透圓的內(nèi)在美(圓心
2024-11-23 13:04
【總結(jié)】課時課題:第三章第2節(jié)圓的對稱性(第二課時)課型:新授課授課時間:2013年2月27日星期三第一節(jié)學(xué)習(xí)目標:1.理解圓的旋轉(zhuǎn)不變性;2.利用圓的旋轉(zhuǎn)不變性研究圓心角、弧、弦之間相等關(guān)系的定理.教學(xué)重點與難點:重點:、弧、弦之間相等關(guān)系的定理.“同圓”或“等圓”的前提條件.難點:利用所學(xué)知識解決問題時忽視“同圓”或“等圓”的條件.教法
2025-08-17 05:29
【總結(jié)】九年級下冊第三章圓的對稱性.,圓心角、弦、弧中有一個量相等就可以推出其他的兩個量對應(yīng)相等,以及它們在解題中的應(yīng)用.一、圓的對稱性說一說(1)圓是軸對稱圖形嗎?如果是,它的對稱軸是什么?你能找到多少條對稱軸?(2)你是怎么得出結(jié)論的?圓的對稱性:
2025-05-06 23:23
【總結(jié)】2013中考全國100份試卷分類匯編圓的垂徑定理1、(2013年濰坊市)如圖,⊙O的直徑AB=12,CD是⊙O的弦,CD⊥AB,垂足為P,且BP:AP=1:5,則CD的長為().A.B.C.D.2、(2013年黃石)如右圖,在中,,,,以點為圓心,為半徑的圓與交于點,則的長為()
2025-06-22 23:13
【總結(jié)】問題:你知道趙州橋嗎?它是1300多年前我國隋代建造的石拱橋,是我國古代人民勤勞與智慧的結(jié)晶.它的主橋是圓弧形,它的跨度(弧所對的弦的長)為,拱高(弧的中點到弦的距離)為,你能求出趙洲橋主橋拱的半徑嗎?趙州橋主橋拱的半徑是多少?實踐探究把一個圓沿著它的任意一條直徑對折,重復(fù)幾次,你發(fā)現(xiàn)了什么?由此你能得到
2025-08-01 16:34
【總結(jié)】實踐探究把一個圓沿著它的任意一條直徑對折,重復(fù)幾次,你發(fā)現(xiàn)了什么?由此你能得到什么結(jié)論?圓是軸對稱圖形,判斷:任意一條直徑都是圓的對稱軸()X任何一條直徑所在的直線都是對稱軸。觀察并回答(1)兩條直徑AB、CD,CD平分AB嗎?(2)若把直徑AB向下平移,變成非直徑的弦,弦AB是否一
2025-07-26 05:18
【總結(jié)】在白紙上任意作一個圓和這個圓的任意一條直徑CD,然后沿著直徑所在的直線把紙折疊,你發(fā)現(xiàn)了什么?結(jié)論1:圓是軸對稱圖形,每一條直徑所在的直線都是對稱軸。強調(diào):判斷:任意一條直徑都是圓的對稱軸()X
2024-11-10 22:18
【總結(jié)】課題垂徑定理惠陽區(qū)第四中學(xué)教材分析?教材的地位和作用:本節(jié)課要研究的是圓的軸對稱性與垂徑定理及簡單應(yīng)用,垂徑定理既是前面圓的性質(zhì)的重要體現(xiàn),是圓的軸對稱性的具體化,也是今后證明線段相等、角相等、弧相等、垂直關(guān)系的重要依據(jù),同時也是為進行圓的計算和作圖提供了方法和依據(jù),所以它在教材中處于非常重要的位置。學(xué)情分析?
2024-10-17 10:32
【總結(jié)】圓的對稱性2之垂徑定理CDM└●OAB圓是對稱圖形,它有哪些對稱性?既是對稱軸旋轉(zhuǎn)中心直徑所在直線圓心幾條?幾度?無數(shù)條任意角度軸對稱又是中心對稱將圖中的扇形AOB繞點O逆時針旋轉(zhuǎn)某個角度。對比前后兩個圖形,我們發(fā)
2025-07-18 18:05
【總結(jié)】1、我們所學(xué)的圓是不是軸對稱圖形呢?.2、我們所學(xué)的圓是不是中心對稱圖形呢?3、填空:(1)根據(jù)圓的定義,“圓”指的是“”,是線,而不是“圓面”。(2)圓心和半徑是確定一個圓的兩個必需條件,圓心決定圓的,半徑?jīng)Q定圓的,二者缺一不可。(3)同一個圓的半徑
2025-08-04 23:38