freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

全等三角形常用輔助線做法-資料下載頁

2025-06-19 22:43本頁面
  

【正文】 線是角的對稱軸,在證明全等過程中不僅提供了兩個(gè)相等的角,還有一條公共邊,利用角的平分線在角的兩邊上截取相等的線段,或向兩邊作垂線,對稱構(gòu)造出全等三角形是常用的證明方法.例5.如圖5,在四邊形ABCD中,已知BD平分∠ABC,∠A+∠C=180176。.證明:AD=CD.                分析:由角的平分線條件,在BC上截取BE=BA,可構(gòu)造△ABD≌△EBD,從而AD=DE.則只要證明DE=CD.證明:在BC上截取BE=BA,連接DE.由BD平分∠ABC,易證△ABD≌△EBD∴AD=DE ∠A=∠BED又∠A+∠C=180176。,∠BED+∠DEC=180176?!唷螪EC=∠C,∴DE=CD∴AD=CD  已知,如圖2,∠1=∠2,P為BN上一點(diǎn),且PD⊥BC于點(diǎn)D,AB+BC=2BD。求證:∠BAP+∠BCP=180176。證明:過點(diǎn)P作PE垂直BA的延長線于點(diǎn)E,如圖22全等三角形問題中常見的輔助線的作法常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”.2)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對折”,所考知識點(diǎn)常常是角平分線的性質(zhì)定理或逆定理.4)過圖形上某一點(diǎn)作特定的平分線,構(gòu)造全等三角形,利用的思維模式是全等變換中的“平移”或“翻轉(zhuǎn)折疊”5)截長法與補(bǔ)短法,具體做法是在某條線段上截取一條線段與特定線段相等,或是將某條線段延長,是之與特定線段相等,再利用三角形全等的有關(guān)性質(zhì)加以說明.這種作法,適合于證明線段的和、差、倍、分等類的題目.特殊方法:在求有關(guān)三角形的定值一類的問題時(shí),常把某點(diǎn)到原三角形各頂點(diǎn)的線段連接起來,利用三角形面積的知識解答.
點(diǎn)擊復(fù)制文檔內(nèi)容
法律信息相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1