【總結】,2,3三個數(shù)字組成一個四位數(shù),規(guī)定這三個數(shù)必須全部使用,且同一數(shù)字不能相鄰出現(xiàn),這樣的四位數(shù)有( )答案 B解析 利用樹狀圖考察四個數(shù)位上填充數(shù)字的情況,如:1,共可確定8個四位數(shù),但其中不符合要求的有2個,所以所確定的四位數(shù)應有18個,故選B.,現(xiàn)從男生中選2人,女生中選1人,分別去做3種不同的工作,共有90種不同的選法,則男,女生人數(shù)為( ),6,5
2025-03-25 02:36
【總結】排列組合二項定理排列組合二項定理知識要點一、兩個原理.1.乘法原理、加法原理.2.可以有重復元素的排列.從m個不同元素中,每次取出n個元素,元素可以重復出現(xiàn),按照一定的順序排成一排,那么第一、第二……第n位上選取元素的方法都是m個,所以從m個不同元素中,每次取出n個元素可重復排列數(shù)m·m·…m=mn..例如:n件物品放入m個抽屜中,不限
2025-06-25 23:05
【總結】億庫教育網(wǎng)百萬教學資源免費下載排列、組合與二項式定理測試卷一、選擇題:(本大題共10小題,每小題5分,共50分)1.若從集合P到集合Q={a,b,c}所有不同的映射共有81個,則從集合Q到集合P可作的不同的映射共有()A.32個 B.27個 C.81個 D.64個2.某班舉行聯(lián)歡會,原定的五個節(jié)目已排出節(jié)目單,演出前又增加了兩個節(jié)目,若將這兩個節(jié)目插入
【總結】思銳精英教育排列組合典型題大全一.可重復的排列求冪法:重復排列問題要區(qū)分兩類元素:一類可以重復,另一類不能重復,把不能重復的元素看作“客”,能重復的元素看作“店”,則通過“住店法”可順利解題,在這類問題使用住店處理的策略中,關鍵是在正確判斷哪個底數(shù),哪個是指數(shù)【例1】(1)有4名學生報名參加數(shù)學、物理、化學競賽,每人限報一科,有多少種不同的報名方法?(2)有4
2025-06-25 23:10
【總結】完美WORD格式《排列組合》一、排列與組合,有多少種不同選法?,1人下鄉(xiāng)演出,1人在本地演出,有多少種不同選派方法?3.現(xiàn)從男、女8名學生干部中選出2名男同學和1名女同學分別參加全?!百Y源”、“生態(tài)”和“環(huán)保”三個夏令營活動,已知共有90種不同的方案,那么男、女同
2025-06-25 22:56
【總結】排列組合綜合問題教學目標通過教學,學生在進一步加深對排列、組合意義理解的基礎上,掌握有關排列、組合綜合題的基本解法,提高分析問題和解決問題的能力,學會分類討論的思想.教學重點與難點重點:排列、組合綜合題的解法.難點:正確的分類、分步.教學用具投影儀.教學過程設計(一)引入師:現(xiàn)在我們大家已經(jīng)學習和掌握了一些排列問題和組
2025-03-25 02:37
【總結】.2014高三暑期保送復習《排列組合與概率》專題
2025-08-05 07:28
【總結】排列組合與二項式定理基礎練習題1.的展開式中,的系數(shù)為()A.15B.-15C.60D.-602.展開式的常數(shù)項為()A.-160 B.-5 C.240 D.803.二項式的展開式中,第三項的系數(shù)比第二項的二項式系數(shù)大44,則展開式的常數(shù)項為第()項.A.3 B.4 C.7 D.84.已知,則展開式中的系數(shù)為()A.24 B.32
2025-08-05 07:27
【總結】2014高三暑期保送復習《排列組合與概率》專題
【總結】數(shù)學補差(4)———計數(shù)原理1.將個不同的小球放入個盒子中,則不同放法種數(shù)有A.B.C.D.2.個人排成一排,其中甲、乙兩人至少有一人在兩端的排法種數(shù)有A.B.C.D.3.共個人,從中選1名組長1名副組長,但不能當副組長,不同的選法總數(shù)是A.B.C.D.4.現(xiàn)有男、女學生共人,從男生中選
2025-06-25 22:57
【總結】完美WORD格式《排列組合》一、排列與組合,有多少種不同選法?,1人下鄉(xiāng)演出,1人在本地演出,有多少種不同選派方法?3.現(xiàn)從男、女8名學生干部中選出2名男同學和1名女同學分別參加全?!百Y源”、“生態(tài)”和“環(huán)?!比齻€夏令營活動,已知共有90種不同的方案,那么男、女同
2025-08-05 07:32
【總結】1.從1,3,5中選2個不同數(shù)字,從2,4,6,8中選3個不同數(shù)字排成一個五位數(shù),則這些五位數(shù)中偶數(shù)的個數(shù)為()A.5040B.1440C.864D.7202.五個同學排成一排照相,其中甲、乙兩人不排兩端,則不同的排法種數(shù)為()A.33B.36C.40D.483.某校從8名教師中選派4名同時去4個邊遠地區(qū)支教(每地1
2025-08-05 18:10
【總結】1排列組合1.將3個不同的小球放入4個盒子中,則不同放法種數(shù)有()A.81B.64C.12D.142.5個人排成一排,其中甲、乙兩人至少有一人在兩端的排法種數(shù)有()A.33AB.334AC.
2024-11-23 12:24
【總結】專業(yè)資料整理分享排列組合典型題大全一.可重復的排列求冪法:重復排列問題要區(qū)分兩類元素:一類可以重復,另一類不能重復,把不能重復的元素看作“客”,能重復的元素看作“店”,則通過“住店法”可順利解題,在這類問題使用住店處理的策略中,關鍵是在正確判斷哪個底數(shù),
【總結】排列組合問題經(jīng)典題型與通用方法:題目中規(guī)定相鄰的幾個元素捆綁成一個組,當作一個大元素參與排列.,如果必須相鄰且在的右邊,則不同的排法有()A、60種B、48種C、36種D、24種:元素相離(即不相鄰)問題,可先把無位置要求的幾個元素全排列,再把規(guī)定的相離的幾個元素插入上述幾個元