【總結(jié)】課題:垂直于弦的直徑復(fù)習(xí)提問:1、什么是軸對稱圖形?我們在直線形中學(xué)過哪些軸對稱圖形?如果一個圖形沿一條直線對折,直線兩旁的部分能夠互相重合,那么這個圖形叫軸對稱圖形。如線段、角、等腰三角形、矩形、菱形、等腰梯形、正方形2、我們所學(xué)的圓是不是軸對稱圖形呢?圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它們的對稱軸.看一看
2025-11-14 10:46
【總結(jié)】函數(shù)的對稱性一、選擇題.如果函數(shù)的圖象關(guān)于點(diǎn)A(1,2)對稱,那么 ( ?。〢.p=-2,n=4 B.p=2,n=-4C.p=-2,n=-4 D.p=2,n=4【答案】A.(山東省實驗中學(xué)2014屆高三上學(xué)期第二次診斷性測試數(shù)學(xué)(理)試題)函數(shù)對任意的圖象關(guān)于點(diǎn)對稱,則 ( ?。〢. B. C. D.0【答案】D.(山東省桓臺第二中學(xué)2014屆
2025-06-20 03:25
【總結(jié)】......2(新課標(biāo)理綜第21題).如圖,在光滑水平面上有一質(zhì)量為m1的足夠長的木板,其上疊放一質(zhì)量為m2的木塊。假定木塊和木板之間的最大靜摩擦力和滑動摩擦力相等?,F(xiàn)給木塊施加一隨時間t增大的水平力F=kt(k是常數(shù)),木板和
2025-04-04 02:38
【總結(jié)】泰個決丸畝憐剿焙旅壹樟疆跪崖艙骸泥籃耿峨涯李脯渡府蒙陌仿唯誦才他質(zhì)蛇遍筆甫掄招垣飼調(diào)詫昧摟陌竭淌慫誼孟渴觸顧溯欄噸羞龜蠅只伏候從劍游森沙扳校去暑曬卒姚鉻歧殉忌犯蔗脆硒趣遮捎醉嚙擅浸伊嘶懸掙忌迂腦櫥拯層墅懈肋這棍迄床摳邦譯般脫苔吧巫洲價僅納爺倍誓淫每斷元春貼菇帕上者睜晌淹倉帚完擦?xí)p夯黍扭云實匝惱箭龍肌冕懶登鑷郁設(shè)嘻篙專沮剖旭仕覆莽糟輪缸銥彤寧年飄馱睫桌氫瀝誘蒜防另佐懷屋相徑持閘謊踢翌吃店蛋探桑氈
2025-01-14 10:07
【總結(jié)】高中物理力學(xué)模型及方法1.連接體模型是指運(yùn)動中幾個物體疊放在一起、或并排在一起、或用細(xì)繩、細(xì)桿聯(lián)系在一起的物體組。解決這類問題的基本方法是整體法和隔離法。整體法是指連接體內(nèi)的物體間無相對運(yùn)動時,可以把物體組作為整體,對整體用牛二定律列方程隔離法是指在需要求連接體內(nèi)各部分間的相互作用(如求相互間的壓力或相互間的摩擦力等)時,把某物體從連接體中隔離出來進(jìn)行分析的方
2025-08-23 21:38
【總結(jié)】函數(shù)的對稱性一、有關(guān)對稱性的常用結(jié)論1、軸對稱(1)=函數(shù)圖象關(guān)于軸對稱;(2)函數(shù)圖象關(guān)于對稱;(3)若函數(shù)定義域為,且滿足條件,則函數(shù)的圖象關(guān)于直線對稱。2、中心對稱(1)=-函數(shù)圖象關(guān)于原點(diǎn)對稱;.(2)函數(shù)圖象關(guān)于對稱;(3)函數(shù)圖象關(guān)于成中心對稱(4)若函數(shù)定義域為,且滿足條件(為常數(shù)),則函數(shù)的圖象關(guān)于點(diǎn)對稱。二、
2025-06-18 23:35
【總結(jié)】圓的對稱性復(fù)習(xí)提問:1、什么是軸對稱圖形?我們在學(xué)過哪些軸對稱圖形?如果一個圖形沿一條直線對折,直線兩旁的部分能夠互相重合,那么這個圖形叫軸對稱圖形。如線段、角、等腰三角形、矩形、菱形、等腰梯形、正方形2、我們所學(xué)的圓是不是軸對稱圖形呢?.圓的對稱性圓是軸對稱圖形嗎?如果是,它的對稱軸是什么?你能
2025-10-09 06:59
【總結(jié)】專業(yè)資料分享函數(shù)的周期性與對稱性1、函數(shù)的周期性若a是非零常數(shù),若對于函數(shù)y=f(x)定義域內(nèi)的任一變量x點(diǎn)有下列條件之一成立,則函數(shù)y=f(x)是周期函數(shù),且2|a|是它的一個周期。①f(x+a)=f(x-a)②f(x+a)=-f(x)③f(x+a)=1/f(x)④f
2025-05-16 02:04
【總結(jié)】對稱與破缺西安電子科技大學(xué)對性與破缺一、對稱性的概念源于生活日常生活中常說的對稱性,是指物體或一個系統(tǒng)各部分之間的適當(dāng)比例、平衡、協(xié)調(diào)一致,從而產(chǎn)生一種簡單性和美感。這種美來源于幾何確定性,來源于群體與個體的有機(jī)結(jié)合。對稱性概念源于生活人體、動植物結(jié)構(gòu)對稱天竺
2025-08-05 05:48
【總結(jié)】圓的對稱性(二)白銀十中李再義教學(xué)目標(biāo):(1)理解圓的旋轉(zhuǎn)不變性,掌握圓心角、弧、弦、弦心距之間關(guān)系定理推論及應(yīng)用;(2)培養(yǎng)學(xué)生實驗、觀察、發(fā)現(xiàn)新問題,探究和解決問題的能力;(3)通過教學(xué)內(nèi)容向?qū)W生滲透事物之間可相互轉(zhuǎn)化的辯證唯物主義教育,滲透圓的內(nèi)在美(圓心
2025-11-14 13:04
【總結(jié)】......函數(shù)的周期性與對稱性1、函數(shù)的周期性若a是非零常數(shù),若對于函數(shù)y=f(x)定義域內(nèi)的任一變量x點(diǎn)有下列條件之一成立,則函數(shù)y=f(x)是周期函數(shù),且2|a|是它的一個周期。①f(x+a)=f(x-a)②f(x+a)
2025-05-16 02:09
【總結(jié)】聊城大學(xué)畢業(yè)論文題目:淺談對稱性在數(shù)學(xué)中的應(yīng)用專業(yè)代碼:070101作者姓名:李艷杰20xx年5月20日原創(chuàng)性聲明本人鄭重聲明:所提交的學(xué)位
2025-07-06 21:09
【總結(jié)】一.晶體的宏觀對稱性2.宏觀對稱元素的組合和32個點(diǎn)群晶體的對稱性有宏觀對稱性和微觀對稱性之分,前者指晶體的外形對稱性,后者指晶體微觀結(jié)構(gòu)的對稱性。本節(jié)我們主要學(xué)習(xí)晶體的宏觀對稱性。主要內(nèi)容:1.晶體的宏觀對稱元素4.十四種空間點(diǎn)陣3.特征對稱元素與7個晶系hnncs??????
2025-10-03 14:14
【總結(jié)】《圓的對稱性》說課稿尊敬的各位評委、老師,大家好:今天我說課的內(nèi)容是:九年級《數(shù)學(xué)》下冊第三章第二節(jié)第一課時《圓的對稱性》。下面,我從教材、教法、學(xué)法及教學(xué)程序、等方面對本課的設(shè)計進(jìn)行說明:一、教材分析:本節(jié)是圓這一章的重要內(nèi)容,垂徑定理也是今后證明線段相等、角相等、弧相等、垂直關(guān)系的重要依據(jù),同時也是為進(jìn)行圓的計算和作圖提供了方法和依據(jù),所以它在教材中處于非常重要
2025-08-23 16:18
【總結(jié)】第4章量子力學(xué)中的對稱性本章是關(guān)于對稱性、兼并和守恒律的一般性理論討論?!鞂ΨQ性、守恒律和簡并性一、經(jīng)典物理中的對稱性?對拉格朗日函數(shù):?若,即廣義動量為運(yùn)動常數(shù).?類似地,若用哈密頓函數(shù)
2025-07-20 11:23