【總結(jié)】二次函數(shù)圖象對稱性的應用一、幾個重要結(jié)論:1、拋物線的對稱軸是直線__________。2、對于拋物線上兩個不同點P1(),P2(),若有,則P1,P2兩點是關于_________對稱的點,且這時拋物線的對稱軸是直線_____________;反之亦然。3、若拋物線與軸的兩個交點是A(,0),B(,0),則拋物線的對稱軸是__________(此結(jié)論是第2條性質(zhì)的特例,
2025-04-16 13:00
【總結(jié)】巧用反比例函數(shù)的對稱性反比例函數(shù)圖象的對稱性在解題時常薦會被忽略,但是事實上它的作用無處不在,而且它讓我們感受到數(shù)形結(jié)合是多么的奇妙.一、求代數(shù)式的值例1如果一個正比例函數(shù)與一個反比例函數(shù)的圖象交于A,兩點,那么的值為方法一設正比例函數(shù)的解析式是,與反比例函數(shù)聯(lián)立方程,消去得到由韋達定理,可知又∴
2025-03-25 01:05
【總結(jié)】......三次函數(shù)再探討---對稱中心問題武漢市長虹中學郭永清三次函數(shù)存在對稱中心嗎?我們先從幾個特殊的函數(shù)入手,三次函數(shù)()是奇函數(shù),其圖象關于對稱,三次函數(shù)()的圖象關于點對稱,那么對于一般的三次函數(shù)有沒有對稱中心呢
2025-03-24 05:41
【總結(jié)】自強不息厚德載物授課類型T周期性與對稱性C冪函數(shù)圖像T冪函數(shù)性質(zhì)教學內(nèi)容周期性1、周期函數(shù)的定義一般地,對于函數(shù),如果存在一個非零常數(shù)T,使得當x取定義域內(nèi)的每一個值時,都有,那么函數(shù)就叫做周期函數(shù),非零常數(shù)T叫做這個函數(shù)的一個周期。如果所有的周期中存在著一
2025-08-05 04:34
【總結(jié)】......抽象函數(shù)的周期性與對稱性知識點梳理一、抽象函數(shù)的對稱性定理1.若函數(shù)定義域為,且滿足條件:,則函數(shù)的圖象關于直線對稱。推論1.若函數(shù)定義域為,且滿足條件:,則函數(shù)的圖像關于直線對稱。推論
2025-05-16 05:00
【總結(jié)】135x55x30°1、求下列三角形中的xX=1253x?課前練習:課前練習:2、下列圖形是不是軸對稱圖形,如果是請畫出它的對稱軸。正方形矩形等腰三角形1、我們昨天所學的圓是不是軸對稱圖形?如果是,它的對稱軸是什么?你能找到多少條對稱軸?(同學之間進行交流)結(jié)
2025-08-01 17:46
【總結(jié)】ABCDO第2課時§圓的對稱性教學目標1、經(jīng)歷探索圓的對稱性及相關性質(zhì),2、理解圓的對稱性及相關性質(zhì)3、進一步體會和理解研究幾何圖形的各種方法教學重點和難點重點:垂徑定理及其逆定理難點:垂徑定理及其逆定理教學過程設計一、從學生原有的認知結(jié)構提出問
2024-12-03 05:24
【總結(jié)】第2課時§圓的對稱性知識目標:經(jīng)歷探索圓的對稱性及相關性質(zhì);理解圓的對稱性及相關性質(zhì)進一步體會和理解研究幾何圖形的各種方法德育目標:培養(yǎng)學生科學嚴謹?shù)膶W習態(tài)度和開拓進取的精神能力目標:培養(yǎng)學生觀察、分析、探索能力和創(chuàng)造力教學重點和難點重點:垂徑定理及其逆定理難點:垂徑定理及其逆定理
2024-11-29 12:27
【總結(jié)】嚴守俊216355813529652696《函數(shù)的奇偶性周期性對稱性》第10頁共10頁 抽象函數(shù)的對稱性、奇偶性與周期性常用結(jié)論:抽象函數(shù)是指沒有給出具體的函數(shù)解析式或圖像,只給出一些函數(shù)符號及其滿足的條件的函數(shù),如函數(shù)的定義域,解析遞推式
2025-05-27 22:48
【總結(jié)】函數(shù)的對稱性一、有關對稱性的常用結(jié)論(一)函數(shù)圖象自身的對稱關系1、軸對稱(1)=函數(shù)圖象關于軸對稱;(2)函數(shù)圖象關于對稱;(3)若函數(shù)定義域為,且滿足條件,則函數(shù)的圖象關于直線對稱。2、中心對稱(1)=-函數(shù)圖象關于原點對稱;.(2)函數(shù)圖象關于對稱;(3)函數(shù)圖象關于成中心對稱(4)若函數(shù)定義域為,且滿足條件(為常數(shù)),則函
2025-04-17 13:02
【總結(jié)】......函數(shù)對稱性、周期性和奇偶性關嶺民中數(shù)學組(一)、同一函數(shù)的函數(shù)的奇偶性與對稱性:(奇偶性是一種特殊的對稱性)1、奇偶性:(1)奇函數(shù)關于(0,0)對稱,奇函數(shù)有關系式(2)偶函數(shù)關于y(即x=0)軸對稱,偶函
2025-06-16 04:13
【總結(jié)】課時課題:第三章第2節(jié)圓的對稱性(第二課時)課型:新授課授課時間:2013年2月27日星期三第一節(jié)學習目標:1.理解圓的旋轉(zhuǎn)不變性;2.利用圓的旋轉(zhuǎn)不變性研究圓心角、弧、弦之間相等關系的定理.教學重點與難點:重點:、弧、弦之間相等關系的定理.“同圓”或“等圓”的前提條件.難點:利用所學知識解決問題時忽視“同圓”或“等圓”的條件.教法
2025-08-17 05:29
【總結(jié)】圓的對稱性導學案學習目標:1、理解弧、優(yōu)弧、劣弧、圓心角等概念。掌握圓心角、弧、弦之間的關系定理及應用。掌握“垂直于弦的直徑平分這條弦所對的兩條弧”這一結(jié)論。2、通過教學內(nèi)容向?qū)W生滲透事物相互轉(zhuǎn)化的辯證唯物主義教育,滲透圓的內(nèi)在美,激發(fā)學生的求知欲。3、經(jīng)歷探索圓的對稱性及相關性質(zhì)的過程,培養(yǎng)學生實驗觀察、發(fā)現(xiàn)新問題,探究和解決問題的
2024-11-23 12:22
【總結(jié)】1/3第2課時圓的對稱性課時測評方案基礎練知識點一圓是軸對稱圖形1.選擇。(1)在下面的圖形中,()一定是軸對稱圖形。A.平行四邊形B.梯形C.圓(2)將下面物體的平面圖畫在紙上,()一定是軸對稱圖形。A.茶杯B.籃球
2025-08-10 14:49
【總結(jié)】函數(shù)奇偶性、對稱性與周期性奇偶性、對稱性和周期性是函數(shù)的重要性質(zhì),下面總結(jié)關于它們的一些重要結(jié)論及運用它們解決抽象型函數(shù)的有關習題。一、幾個重要的結(jié)論(一)函數(shù)圖象本身的對稱性(自身對稱)2、的圖象關于直線對稱。3、的圖象關于直線對稱。4、的圖象關于直線對稱。5、的圖象關于點對稱。6、
2025-06-18 20:22