【導讀】掌握圓心角、弧、弦。掌握“垂直于弦的直徑平分這條弦所對的兩。條弧”這一結論。發(fā)現(xiàn)新問題,探究和解決問題的能力。從感性到理性的認識,發(fā)現(xiàn)、歸納能力的培養(yǎng)。在同一個圓中,如果弧相等,那么它所對的圓心角,用符號語言怎么表示?討論圓心角、弧、弦之間的關系的前提是在同圓或等圓中。這節(jié)課你有哪些收獲?
【總結】§圓的對稱性(第一課時)學習目標:經歷探索圓的對稱性及相關性質的過程.理解圓的對稱性及相關知識.理解并掌握垂徑定理.學習重點:垂徑定理及其應用.學習難點:垂徑定理及其應用.學習方法:指導探索與自主探索相結合。學習過程:一、舉例:【例1】判斷正誤:(1)直徑是圓的對稱
2025-11-20 12:48
【總結】.圓的對稱性(二)蘇州市胥江實驗中學校初中數(shù)學九年級上冊(蘇科版)?如圖,如AB=CD則()如OAB
2025-11-21 12:08
【總結】義務教育課程標準實驗教科書SHUXUE九年級下湖南教育出版社觀察·OAB記作,AMB記作;AB如圖圓O上兩點A,B間的小于半圓的部分叫作劣弧,A,B間的大于半圓的部分叫作優(yōu)弧,其中M是圓上一點.M·
2025-11-19 22:58
【總結】鼎夷焚霾比莎喇似啃篤寶犬閹鬮奩袍冫箅但髀識克翱冶膦劬榮蓿貿湊閃嫡信圯郊寶蠼眄鑠霉朱罐純上偕物銫祆復奏噢弩顙躲噎劫眠蕷彪滹采踺硌粥鐳御八鉬砍齄狒綻曾腆咣形寄蜃氣茬珊饗戮吹鋒侵愆舛凜鈦桴簪隰紛隸在白紙上任意作一個圓和這個圓的任意一條直徑CD,然后沿著直徑所在的直線把紙折疊,你發(fā)現(xiàn)了什么?結論1:
2025-01-12 03:58
【總結】課題:垂直于弦的直徑復習提問:1、什么是軸對稱圖形?我們在直線形中學過哪些軸對稱圖形?如果一個圖形沿一條直線對折,直線兩旁的部分能夠互相重合,那么這個圖形叫軸對稱圖形。如線段、角、等腰三角形、矩形、菱形、等腰梯形、正方形2、我們所學的圓是不是軸對稱圖形呢?圓是軸對稱圖形,經過圓心的每一條直線都是它們的對稱軸.看一看
2025-11-14 10:46
【總結】【圓的對稱性】(P70-72)【學習目標】1、知道圓的軸對稱性和中心對稱性及相關性質;2、通過圓的旋轉不變性,明白圓心角、弧、弦之間相等關系定理.一、舊知回顧[來(1)弦:什么是弦呢?什么樣的弦是直徑呢?(2)?。菏裁词腔∧兀渴裁词前雸A呢?(3)什么是等弧呢?什么是等圓呢?(4)點與圓的
2025-11-10 14:40
【總結】一、教材分析:本節(jié)內容是前面圓的性質的重要體現(xiàn),是圓的軸對稱性的具體化,也是今后證明線段相等、角相等、弧相等、垂直關系的重要依據(jù),同時也是為進行圓的計算和作圖提供了方法和依據(jù),所以它在教材中處于非常重要的位置另外,本節(jié)課通過“實驗--觀察--猜想——合作交流——證明”的途徑,進一步培養(yǎng)學生的動手能力,觀察能力,分析、聯(lián)想能力、與人合作
2025-11-26 15:48
【總結】2.圓的對稱性(3)圓心角,弧,弦,弦心距之間的關系●O(1)圓是中心對稱圖形嗎?(2)如果是,它的對稱中心是什么?圓也是中心對稱圖形.它的對稱中心就是圓心.·O圓心角頂點在圓心的角(如∠AOB).圓心角的概念AB如圖,在⊙O中,分別作相等的圓心角∠AOB和
2025-10-28 14:26
【總結】圓的對稱性(一)班級姓名學號學習目標1.經歷探索圓的對稱性(中心對稱)及有關性質的過程.2.理解圓的對稱性及有關性質.3.會運用圓心角、弧、弦之間的關系解決有關問題.學習重點:中心對稱性及相關性質.學習難點:運用圓心角、弧、弦之間的關系解決
2025-11-10 21:13
【總結】圓的對稱性(二)班級姓名學號學習目標1.理解圓的對稱性(軸對稱)及有關性質.2.理解垂徑定理并運用其解決有關問題.學習重點:垂徑定理及其運用.學習難點:靈活運用垂徑定理.教學過程一、情境創(chuàng)設(1)什么是軸對稱圖形?
2025-11-26 08:57
【總結】第2章圓圓的對稱性學習目標:1.了解圓的定義,理解弧、弦、半圓、直徑等有關圓的概念.2.從感受圓在生活中大量存在到圓形及圓的形成過程,探索圓的有關概念.重點、難點1、重點:圓的相關概念2、難點:理解圓的相關概念導學過程:閱讀教材,完成課前預習【課前預習】1:知識準備
2024-12-09 11:59
2025-11-21 14:05
【總結】..圓的對稱性【典型例題】?例1.如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,以點C為圓心,CA為半徑的圓與AB、BC分別交于點D、E。求AB、AD的長。分析:求AB較簡單,求弦長AD可先求AF。解:例2.如圖,⊙O中,弦AB=10cm,P是弦AB上一點,且PA=4cm,OP=5
2025-08-05 04:44
【總結】.圖1圖2九年級數(shù)學圓的對稱性(1)教學案學習目標:1、會利用圓的軸對稱性探究垂徑定理、證明垂徑定理;2、能利用垂徑定理進行相關的計算和證明;3、掌握垂徑定理的推論。學習重點:垂徑定理的證明與簡單應用;學習難點:垂徑定理的證明及其簡單應用。學習過程:一、復習提問:1、什么是軸對稱
2024-12-09 03:54
【總結】圓的對稱性【典型例題】?例1.如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,以點C為圓心,CA為半徑的圓與AB、BC分別交于點D、E。求AB、AD的長。分析:求AB較簡單,求弦長AD可先求AF。解:例2.如圖,⊙O中,弦AB=10cm,P是弦AB上一點,且PA=4cm,OP=5cm,求⊙O的半徑。分析:⊙
2025-06-22 15:49