【總結(jié)】陜西省咸陽(yáng)市涇陽(yáng)縣云陽(yáng)中學(xué)高中數(shù)學(xué)案北師大版必修5【學(xué)習(xí)目標(biāo)】1.能利用正,余弦定理解三角形2.能利用正,余弦定理解判斷三角形的形狀【學(xué)習(xí)重點(diǎn)】正弦定理與余弦定理的綜合應(yīng)用【使用說(shuō)明】[A]2三角形面積定理是什么?寫(xiě)出來(lái)。[A]3余弦定理
2024-11-27 22:09
【總結(jié)】問(wèn)題探究CcoscbbacBcosaccabAcosbccbacbaCBAABC2221222222222?????????? ,請(qǐng)證明下列結(jié)論:,,分別是的對(duì)邊,,中,:在 探究以解決哪些問(wèn)題?請(qǐng)問(wèn)余弦定理可對(duì)角有關(guān)的三角問(wèn)題,對(duì)邊,:正弦定理可以解決與 探究2嗎
2025-03-12 14:29
【總結(jié)】第一篇:2014年高中數(shù)學(xué)新人教A版必修5 教材分析 三維目標(biāo) 知識(shí)與技能:掌握余弦定理的兩種表示形式及證明余弦定理的向量方法,并會(huì)運(yùn)用余弦定理解決兩類(lèi)基本的解三角形問(wèn)題。 過(guò)程與方法:利用向...
2025-10-16 13:05
【總結(jié)】第一篇:高中數(shù)學(xué)《余弦定理》教案1蘇教版必修5 第1課時(shí) 知識(shí)網(wǎng)絡(luò) 三角形中的向量關(guān)系→余弦定理學(xué)習(xí)要求 1.掌握余弦定理及其證明;2.體會(huì)向量的工具性; 3.能初步運(yùn)用余弦定理解斜三角形....
2025-10-17 01:32
【總結(jié)】第一篇:2014年高中數(shù)學(xué)(二)新人教A版必修5 教學(xué)過(guò)程 推進(jìn)新課 :三角形任何一邊的平方等于其他兩邊平方的和減去這兩邊與它們夾角的余弦的積的兩倍 形式一 a2=b2+c2-2bcco...
2024-11-05 06:09
【總結(jié)】正余弦定理的應(yīng)用1、角的關(guān)系2、邊的關(guān)系3、邊角關(guān)系?180???CBAcbacba????,大角對(duì)大邊大邊對(duì)大角三角形中的邊角關(guān)系RCcBbAa2sinsinsin???CabbacBaccabAbccbacos2cos2cos2222222
2024-11-18 08:48
【總結(jié)】正弦定理、余弦定理及其運(yùn)用?一、考綱解讀?二、正弦定理及其變形?三、余弦定理及其變形?四、實(shí)際應(yīng)用問(wèn)題中的基本概念和術(shù)語(yǔ)?五、例題講解?六、高考題再現(xiàn)?七、小結(jié)本節(jié)課內(nèi)容目錄:一、考綱解讀:在課標(biāo)及《教學(xué)要求》中對(duì)正弦定理、余弦定理的要求均為理解(B)。在高考試題中
2024-11-17 23:32
【總結(jié)】正、余弦定理綜合應(yīng)用(1)實(shí)際問(wèn)題抽象概括示意圖數(shù)學(xué)模型推理演算數(shù)學(xué)模型的解實(shí)際問(wèn)題的解還原說(shuō)明實(shí)際問(wèn)題應(yīng)用模型問(wèn)題1.怎樣測(cè)量一個(gè)底部不能到達(dá)的建筑物的高度?如圖,在北京故宮的四個(gè)角上各矗立著一座角樓,如何通過(guò)測(cè)量,求得角樓的高度?
【總結(jié)】1.3正弦定理、余弦定理的應(yīng)用學(xué)習(xí)目標(biāo)預(yù)習(xí)導(dǎo)學(xué)典例精析欄目鏈接情景導(dǎo)入2020年10月12日,中國(guó)宣布了自己的探月計(jì)劃:中國(guó)將在2020年把“嫦娥一號(hào)”繞月衛(wèi)星送入太空,2020年實(shí)現(xiàn)發(fā)射軟著陸器登陸月球.路透社報(bào)道:中國(guó)將在2024年把人送上月球.
2024-11-18 08:11
【總結(jié)】正弦定理、余弦定理的應(yīng)用(1)教學(xué)目標(biāo):1.能熟練應(yīng)用正弦、余弦定理及相關(guān)公式解決三角形中的有關(guān)問(wèn)題;2.能把一些簡(jiǎn)單的實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,并能應(yīng)用正弦、余弦定理及相關(guān)的三角公式解決這些問(wèn)題;3.通過(guò)復(fù)習(xí)、小結(jié),使學(xué)生牢固掌握兩個(gè)定理,應(yīng)用自如.教學(xué)重、難點(diǎn):能熟練應(yīng)用正弦、余弦定理及相關(guān)公式解決三角形的有關(guān)問(wèn)
2024-11-19 21:43
【總結(jié)】正弦定理、余弦定理的應(yīng)用(一)課時(shí)目標(biāo);、余弦定理解決生產(chǎn)實(shí)踐中的有關(guān)距離的問(wèn)題.1.方位角:指從正北方向線(xiàn)按________方向旋轉(zhuǎn)到目標(biāo)方向線(xiàn)所成的水平角.如圖中的A點(diǎn)的方位角為α.2.計(jì)算不可直接測(cè)量的兩點(diǎn)間的距離是正弦定理和余弦定理的重要應(yīng)用之一.一、填空題1.如圖,A、B兩點(diǎn)間的距
2024-12-05 10:14
【總結(jié)】正、余弦定理應(yīng)用(2)例1.如果△A1B1C1的三個(gè)內(nèi)角的余弦值分別等于△A2B2C2的三個(gè)內(nèi)角的正弦值,則()(A)△A1B1C1和△A2B2C2都是銳角三角形(B)△A1B1C1和△A2B2C2都是鈍角三角形(C)△A1B1C1是鈍角三角形,△A2B2C2是銳角三角形(D)△A1
【總結(jié)】正弦定理、余弦定理的應(yīng)用學(xué)案班級(jí)學(xué)號(hào)姓名一一、、學(xué)學(xué)習(xí)習(xí)目目標(biāo)標(biāo)1.會(huì)在各種應(yīng)用問(wèn)題中,抽象成三角形,標(biāo)出已知量、未知量,確定三角形的方法;2.搞清利用解斜三角形可解決的各類(lèi)應(yīng)用題的基本圖形和基本等量關(guān)系;3.理解各種應(yīng)用問(wèn)題中的有關(guān)名詞、術(shù)語(yǔ),如度、俯角、
2024-11-19 19:08
【總結(jié)】知識(shí)回顧1.正弦定理2.面積公式3.余弦定理4.判斷三角形的形狀典例精析。的形狀是,則且,中,已知:在 例_______ABCCcosBcosBsinabABC????3231的值。的大小及求,,且的對(duì)邊,已知,,分別是,,中,:在 例cBsinbAb
【總結(jié)】余弦定理(一)知識(shí)梳理余弦定理:(1)形式一:,,形式二:,,,(角到邊的轉(zhuǎn)換)(2)解決以下兩類(lèi)問(wèn)題:1)、已知三邊,求三個(gè)角;(唯一解)2)、已知兩邊和它們的夾角,求第三邊和其他兩個(gè)角;(唯一解)題型一根據(jù)三角形的三邊關(guān)系求角例1.已知△ABC中,sinA∶sinB∶sinC=(+1)∶(-1)∶,求最大角.解:∵===k∴sinA∶sinB
2025-06-08 00:36