【總結】中考數(shù)學平面向量 初中數(shù)學知識點:平面向量 向量的定義: 既有方向又有大小的量叫做向量。 向量的表示: 具有方向的線段叫做有向線段,以A為起點,B為終點的有向線段記作...
2024-12-06 03:06
【總結】高中數(shù)學精講精練第四章平面向量與復數(shù)【知識圖解】Ⅰ.平面向量知識結構表Ⅱ.復數(shù)的知識結構表【方法點撥】由于向量融形、數(shù)于一體,具有幾何形式與代數(shù)形式的“雙重身份”,使它成為了中學數(shù)學知識的一個重要
2025-08-11 14:53
【總結】2.(2020·北京市海淀區(qū)高三統(tǒng)一練習)若向量a,b滿足:(a-b)(2a+b)=-4,且|a|=2,|b|=4,則a與b的夾角等于____.分析:因為兩向量垂直的充要條件是其數(shù)量積等于
2025-08-13 19:08
【總結】......平面向量高考真題精選(一) 一.選擇題(共20小題)1.(2017?新課標Ⅱ)設非零向量,滿足|+|=|﹣|則( )A.⊥ B.||=|| C.∥ D.||>|| 2.(2017?新課標Ⅱ)已知△ABC是邊
2025-04-17 01:00
【總結】平面向量測試題一、選擇題:1。已知ABCD為矩形,E是DC的中點,且=,=,則=()(A)+(B)-(C)+(D)-2.已知B是線段AC的中點,則下列各式正確的是()(A)=-(B)=(C)=(D)=3.已知ABCDEF是正六邊形,且=,=,則=()(A)(B)(C)+(D)4.設,為不共線向
【總結】專題五 平面向量 第十三講 平面向量的概念與運算 一、選擇題 1.(2018全國卷Ⅰ)在中,為邊上的中線,為的中點,則 A. B. C. D. 2.(2018全國卷Ⅱ)已知向量,滿...
2025-10-01 17:49
【總結】平面向量與解析幾何交匯的綜合問題第1頁共13頁平面向量與解析幾何交匯的綜合問題例1.已知ji??,是x,y軸正方向的單位向量,設a?=jyix????)3(,b?=jyix????)3(,且滿足|a?|+|b?|=4.(1)求點P(x,y)的軌跡C的方程.(2)如果過點Q(0,m)且方向向量為c?
2025-01-07 19:44
【總結】《平面向量與空間向量》專題向量及運算是現(xiàn)代數(shù)學重要標志之一,其引入給中學數(shù)學帶來了無限生機和活力,大大拓寬了解題的思路與方法。它以平面幾何、直角坐標系、三角函數(shù)等知識為基礎,融數(shù)、形于一體,它已成為中學數(shù)學知識的一個交匯點。因此,向量是高考命題中“在知識網(wǎng)絡處設計試題”的很好載體。一、考試要求解讀1
2024-11-10 03:15
【總結】題型二:平面向量的共線問題1、若A(2,3),B(x,4),C(3,y),且=2,則x=,y=2、已知向量a、b,且=a+2b,=-5a+6b,=7a-2b,則一定共線的三點是()A.A、B、DB.A、B、CC.B、C、DD.A、C、D3、如果e1、e2是平面α內(nèi)兩個不共線的向量
2025-03-25 01:23
【總結】......高中復習知識梳理之八平面向量一、重點知識(一)基本概念:向量的有關概念有:向量、自由向量、有向線段、位置向量、零向量、相等向量、相反向量、平行向量(共線向量)、數(shù)乘向量;基線、單位向量、基向量、基底、正交基底:
2025-04-17 02:37
【總結】范文范例參考平面向量高考真題精選(一) 一.選擇題(共20小題)1.(2017?新課標Ⅱ)設非零向量,滿足|+|=|﹣|則( ?。〢.⊥ B.||=|| C.∥ D.||>|| 2.(2017?新課標Ⅱ)已知△ABC是邊長為2的等邊三角形,P為平面ABC內(nèi)一點,則?(+)的最小值是( )A.﹣2 B.﹣ C.﹣ D.﹣1 3.(2017?浙江
【總結】第三節(jié)平面向量的數(shù)量積及平面向量的應用舉例基礎梳理(1)定義已知兩個向量a和b,作=a,=b,則∠AOB=θ叫做向量a與b的夾角.(2)范圍向量夾角θ的取值范圍是,a與b同向時,夾角θ=
2024-11-12 16:44
【總結】專題五:平面向量專題備考指導及考情分析:平面向量是高中數(shù)學的重要內(nèi)容,它是銜接代數(shù)與幾何的橋梁和紐帶,向量、向量法在其他章節(jié)內(nèi)容中的穿插、滲透和融合,是高考數(shù)學試題中的一道靚麗的風景,綜觀2022年全國各地高考試卷,對平面向量的考查主要包括以下三個層次:(1)考查平面向量的性質(zhì)和運算法則,以及基本運算技能;(2)考查向
2025-08-16 02:00
【總結】2014高考數(shù)學一輪復習單元練習--平面向量I卷一、選擇題1.設向量a,b滿足|a|=|b|=1,a·b=-,則|a+2b|=( )A. B.C. D.【答案】B2.已知A、B、C是不在同一直線上的三點,O是平面ABC內(nèi)的一定點,P是平面ABC內(nèi)的一動點,若(λ∈[0,+∞)),則點P的軌跡一定過△ABC的()A.外心 B.內(nèi)心 C.重心
2025-01-14 14:43
【總結】復習模塊:平面向量一、知識點5(1)平面向量的概念及線性運算平面向量兩要素:大小,方向。零向量:記作0,手寫時記做,方向不確定。單位向量:模為1的向量。平行的向量(共線向量):方向相同或相反的兩個非零向量,記作//b。規(guī)定:零向量與任何一個向量平行。相等向量:模相等,方向相同,記作a=b。負向量:與非零向量的模相等,方向相反的向量,記作。規(guī)定:零
2025-04-16 12:58