【總結(jié)】......橢圓與雙曲線的性質(zhì)橢圓1.點(diǎn)P處的切線PT平分△PF1F2在點(diǎn)P處的外角.2.PT平分△PF1F2在點(diǎn)P處的外角,則焦點(diǎn)在直線PT上的射影H點(diǎn)的軌跡是以長軸為直徑的圓,除去長軸的兩個(gè)端點(diǎn).3
2025-04-17 13:06
【總結(jié)】WORD資料可編輯橢圓與雙曲線的性質(zhì)橢圓1.點(diǎn)P處的切線PT平分△PF1F2在點(diǎn)P處的外角.2.PT平分△PF1F2在點(diǎn)P處的外角,則焦點(diǎn)在直線PT上的射影H點(diǎn)的軌跡是以長軸為直徑的圓,除去長軸的兩個(gè)端點(diǎn).3.以焦點(diǎn)弦PQ為直徑的圓必與對(duì)應(yīng)準(zhǔn)線相
【總結(jié)】2012高考試題分類匯編:8:圓錐曲線一、選擇題1.【2012高考新課標(biāo)文4】設(shè)是橢圓的左、右焦點(diǎn),為直線上一點(diǎn),是底角為的等腰三角形,則的離心率為() 【答案】C【解析】因?yàn)槭堑捉菫榈牡妊切?,則有,,因?yàn)?,所?,所以,即,所以,即,所以橢圓的離心率為,選C.2.【2012高考新課標(biāo)文10】等軸
2025-08-08 22:14
【總結(jié)】-1-2020高考試題分類匯編:8:圓錐曲線一、選擇題1.【2020高考新課標(biāo)文4】設(shè)12FF是橢圓22:1(0)xyEabab????的左、右焦點(diǎn),P為直線32ax?上一點(diǎn),12PFF?是底角為30的等腰三角形,則E的離心率為()()A12()B2
2025-10-25 07:20
【總結(jié)】第-1-頁共27頁2020高考試題分類匯編:圓錐曲線一、選擇題1.【2020高考新課標(biāo)文4】設(shè)12FF是橢圓22:1(0)xyEabab????的左、右焦點(diǎn),P為直線32ax?上一點(diǎn),12PFF?是底角為30的等腰三角形,則E的離心率為()()A12
2025-10-25 05:52
【總結(jié)】關(guān)于圓錐曲線的中點(diǎn)弦問題直線與圓錐曲線相交所得弦中點(diǎn)問題,是解析幾何中的重要內(nèi)容之一,也是高考的一個(gè)熱點(diǎn)問題。這類問題一般有以下三種類型:(1)求中點(diǎn)弦所在直線方程問題;(2)求弦中點(diǎn)的軌跡方程問題;(3)求弦中點(diǎn)的坐標(biāo)問題。其解法有代點(diǎn)相減法、設(shè)而不求法、參數(shù)法、待定系數(shù)法及中心對(duì)稱變換法等。一、求中點(diǎn)弦所在直線方程問題例1、過橢圓內(nèi)一點(diǎn)M(2,1)引一條弦,使弦被
2025-07-26 08:15
【總結(jié)】圓錐曲線2020年理科高考解答題薈萃1.(2020浙江理)已知橢圓1C:221(0)yxabab????的右頂點(diǎn)為(1,0)A,過1C的焦點(diǎn)且垂直長軸的弦長為1.(I)求橢圓1C的方程;(II)設(shè)點(diǎn)P在拋物線2C:2()yxhh???R上,2C在點(diǎn)P處的切線與1C交于點(diǎn),
2025-07-27 14:17
【總結(jié)】高考圓錐曲線的七種題型題型一:定義的應(yīng)用1、圓錐曲線的定義:(1)橢圓(2)橢圓(3)橢圓
2025-05-30 22:40
【總結(jié)】高考圓錐曲線壓軸題型總結(jié)直線與圓錐曲線相交,一般采取設(shè)而不求,利用韋達(dá)定理,在這里我將這個(gè)問題分成了三種類型,其中第一種類型的變式比較多。而方程思想,函數(shù)思想在這里也用得多,兩種思想可以提供簡單的思路,簡單的說就是只需考慮未知數(shù)個(gè)數(shù)和條件個(gè)數(shù),。使用韋達(dá)定理時(shí)需注意成立的條件。題型4有關(guān)定點(diǎn),定值問題。將與之無關(guān)的參數(shù)提取出來,再對(duì)其系數(shù)進(jìn)行處理。(湖北卷)設(shè)A、B是橢圓上的兩點(diǎn),點(diǎn)
2025-05-30 22:41
【總結(jié)】......圓錐曲線的七種??碱}型題型一:定義的應(yīng)用1、圓錐曲線的定義:(1)橢圓(2)雙曲線
2025-04-17 13:05
【總結(jié)】......高考圓錐曲線壓軸題型總結(jié)直線與圓錐曲線相交,一般采取設(shè)而不求,利用韋達(dá)定理,在這里我將這個(gè)問題分成了三種類型,其中第一種類型的變式比較多。而方程思想,函數(shù)思想在這里也用得多,兩種思想可以提供簡單的思路,簡單的說就
【總結(jié)】 高考數(shù)學(xué)-圓錐曲線簡化計(jì)算技巧 圓錐曲線計(jì)算技巧——整理自有道精品課關(guān)旭老師公開課“新高三圓錐曲線專項(xiàng)”給定一個(gè)橢圓和一條直線:橢圓方程:x2a2+y2b2=1直線方程:y=kx+b一般做...
2025-01-14 22:17
【總結(jié)】百度搜索李蕭蕭文檔百度搜索李蕭蕭文檔2020北京市高三一模數(shù)學(xué)理分類匯編7:圓錐曲線【2020北京市豐臺(tái)區(qū)一模理】9.已知雙曲線的中心在原點(diǎn),焦點(diǎn)在x軸上,一條漸近線方程為34yx?,則該雙曲線的離心率是?!敬鸢浮?5【2020北京市房山區(qū)一模理】14.F是拋物線22ypx???0
2025-08-14 17:22
【總結(jié)】圓錐曲線的綜合問題直線和圓錐曲線問題解法的一般規(guī)律“聯(lián)立方程求交點(diǎn),根與系數(shù)的關(guān)系求弦長,根的分布找范圍,曲線定義不能忘”.【一】.直線與圓錐曲線的位置關(guān)系(1)從幾何角度看,可分為三類:無公共點(diǎn),僅有一個(gè)公共點(diǎn)及有兩個(gè)相異的公共點(diǎn).(2)從代數(shù)角度看,可通過將表示直線的方程代入二次曲線的方程消元后所得一元二次方程解的情況來判斷.+By+C=0,圓錐曲線方程f(x,
2025-07-25 00:13
【總結(jié)】第九章 求曲線(或直線)方程解析幾何求曲線(或直線)的方程一、基礎(chǔ)知識(shí):1、求曲線(或直線)方程的思考方向大體有兩種,一個(gè)方向是題目中含幾何意義的條件較多(例如斜率,焦距,半軸長,半徑等),那么可以考慮利用幾何意義求出曲線方程中的要素的值,從而按定義確定方程;另一個(gè)方向是
2025-07-25 00:15