freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

校本課程-趣味數(shù)學(xué)-資料下載頁

2025-04-07 02:52本頁面
  

【正文】 在第二個(gè)結(jié)論中,不妨想象將5雙手套分別編號,即號碼為1,2,…,5的手套各有兩只,同號的兩只是一雙。任取6只手套,它們的編號至多有5種,因此其中至少有兩只的號碼相同。這相當(dāng)于把6個(gè)東西放入5個(gè)抽屜,至少有2個(gè)東西在同一抽屜里。例:利用上述原理證明:“任意7個(gè)整數(shù)中,至少有3個(gè)數(shù)的兩兩之差是3的倍數(shù)?!狈治觯阂?yàn)槿我徽麛?shù)除以3時(shí)余數(shù)只有0、2三種可能,所以7個(gè)整數(shù)中至少有3個(gè)數(shù)除以3所得余數(shù)相同,即它們兩兩之差是3的倍數(shù)?! ∪绻麊栴}所討論的對象有無限多個(gè),抽屜原理還有另一種表述:“把無限多個(gè)東西任意分放進(jìn)n個(gè)空抽屜(n是自然數(shù)),那么一定有一個(gè)抽屜中放進(jìn)了無限多個(gè)東西?!背閷显淼膬?nèi)容簡明樸素,易于接受,它在數(shù)學(xué)問題中有重要的作用。許多有關(guān)存在性的證明都可用它來解決。一、抽屜原理和六人集會(huì)問題  1958年6/7月號的《美國數(shù)學(xué)月刊》上有這樣一道題目:  “證明在任意6個(gè)人的集會(huì)上,或者有3個(gè)人以前彼此相識,或者有三個(gè)人以前彼此不相識?!薄 ∵@個(gè)問題可以用如下方法簡單明了地證出:  在平面上用6個(gè)點(diǎn)A、B、C、D、E、F分別代表參加集會(huì)的任意6個(gè)人。如果兩人以前彼此認(rèn)識,那么就在代表他們的兩點(diǎn)間連成一條紅線;否則連一條藍(lán)線??紤]A點(diǎn)與其余各點(diǎn)間的5條連線AB,AC,...,AF,它們的顏色不超過2種。根據(jù)抽屜原理可知其中至少有3條連線同色,不妨設(shè)AB,AC,AD同為紅色。如果BC,BD,CD3條連線中有一條(不妨設(shè)為BC)也為紅色,那么三角形ABC即一個(gè)紅色三角形,A、B、C代表的3個(gè)人以前彼此相識:如果BC、BD、CD3條連線全為藍(lán)色,那么三角形BCD即一個(gè)藍(lán)色三角形,B、C、D代表的3個(gè)人以前彼此不相識。不論哪種情形發(fā)生,都符合問題的結(jié)論。圖1六人集會(huì)問題是組合數(shù)學(xué)中著名的拉姆塞定理的一個(gè)最簡單的特例,這個(gè)簡單問題的證明思想可用來得出另外一些深入的結(jié)論。這些結(jié)論構(gòu)成了組合數(shù)學(xué)中的重要內(nèi)容拉姆塞理論。從六人集會(huì)問題的證明中,我們又一次看到了抽屜原理的應(yīng)用。二、抽屜原理與“電腦算命”  “電腦算命”看起來挺玄乎,只要你報(bào)出自己出生的年、月、日和性別,一按按鍵,屏幕上就會(huì)出現(xiàn)所謂性格、命運(yùn)的句子,據(jù)說這就是你的“命”?! ∑鋵?shí)這充其量不過是一種電腦游戲而已。我們用數(shù)學(xué)上的抽屜原理很容易說明它的荒謬。  如果以70年計(jì)算,按出生的年、月、日、性別的不同組合數(shù)應(yīng)為703652=51100,我們把它作為“抽屜”數(shù)。我國現(xiàn)有人口11億,我們把它作為“物體”數(shù)。=2152651100+21400,根據(jù)原理2,存在21526個(gè)以上的人,盡管他們的出身、經(jīng)歷、天資、機(jī)遇各不相同,但他們卻具有完全相同的“命”,這真是荒謬絕倫!  在我國古代,早就有人懂得用抽屜原理來揭露生辰八字之謬。如清代陳其元在《庸閑齋筆記》中就寫道:“余最不信星命推步之說,以為一時(shí)(注:指一個(gè)時(shí)辰,合兩小時(shí))生一人,一日生十二人,以歲計(jì)之則有四千三百二十人,以一甲子(注:指六十年)計(jì)之,止有二十五萬九千二百人而已,今只以一大郡計(jì),其戶口之?dāng)?shù)已不下數(shù)十萬人(如咸豐十年杭州府一城八十萬人),則舉天下之大,自王公大人以至小民,何啻億萬萬人,則生時(shí)同者必不少矣。其間王公大人始生之時(shí),必有庶民同時(shí)而生者,又何貴賤貧富之不同也?”在這里,一年按360日計(jì)算,一日又分為十二個(gè)時(shí)辰,得到的抽屜數(shù)為6036012=259200。所謂“電腦算命”,不過是把人為編好的算命語句象中藥柜那樣事先分別一一存放在各自的柜子里,誰要算命,即根據(jù)出生的年月、日、性別的不同的組合按不同的編碼機(jī)械地到電腦的各個(gè)“柜子”里取出所謂命運(yùn)的句子。這種在古代迷信的亡靈上罩上現(xiàn)代科學(xué)光環(huán)的勾當(dāng),是對科學(xué)的褻瀆。第八節(jié) 帕斯卡(楊輝)三角形與道路問題  蘇珊很為難,她步行去學(xué)校,路上老是遇到斯廷基。斯廷基:“嘿嘿,蘇珊,我可以陪你一起走嗎?”蘇珊:“不!請走開?!薄 √K珊心想:我有辦法了,每天早上我走不同的路線去學(xué)校,這樣斯廷基就不知道在哪兒找到我了。下面這張地圖表示蘇珊的住所和學(xué)校之間的所有街道,蘇珊去學(xué)校時(shí),走路的方向總是朝南或朝東,她總共有多少條路線呢?蘇珊:“我真想知道有多少條路線可走,讓我想一想,要算出多少條路線看來并不簡單。嗯,啊哈!一點(diǎn)不難,簡單得很!”蘇珊想到了什么好主意呢?  她的推理如下:蘇珊:“在我家這個(gè)角點(diǎn)上寫一個(gè)1,因?yàn)槲抑荒軓倪@一點(diǎn)出發(fā),然后在與此相隔一個(gè)街區(qū)的兩個(gè)角點(diǎn)上各寫一個(gè)1,因?yàn)榈侥抢镏挥幸粭l途徑?,F(xiàn)在,我在這個(gè)角點(diǎn)上寫上2,因?yàn)榈竭_(dá)那里可以有兩條途徑。蘇珊發(fā)現(xiàn)2是1加1之和,她忽然領(lǐng)悟:若到某一個(gè)僅有一條途徑,則該角點(diǎn)上的數(shù)字為前一個(gè)角點(diǎn)上的數(shù)字;若有兩條途徑,則為前兩個(gè)角點(diǎn)上的數(shù)字之和?! √K珊:“瞧,又有四個(gè)角點(diǎn)標(biāo)上了數(shù)字,我馬上把其他角點(diǎn)也標(biāo)上數(shù)字?!闭埬闾嫣K珊把剩下的角點(diǎn)標(biāo)上數(shù)字,并且告訴她步行到學(xué)校共有多少條不同的路線?! √K珊的家H1  11  21  31      1?    ?              ???  3  6 ?。俊    ??                              學(xué)校G  剩下的5個(gè)點(diǎn),自上而下,從左至右分別標(biāo)以1,4,10,5,15。最后一點(diǎn)上的15表示蘇珊去學(xué)校共有十五條最短路徑。  蘇珊所發(fā)現(xiàn)的是一種快速而簡單的算法,用來計(jì)算從她家到學(xué)校的最短路徑共有多少條。要是她把這些路徑一條一條地畫出來,然后再計(jì)數(shù),這樣肯定麻煩,還容易出錯(cuò)。如果街道的數(shù)目很多,那么這種方法根本就行不通。你不妨把這十五條路線都畫出來,這樣你就更能體會(huì)到蘇珊的算法是多么地有效了?! ∧銓@種算法是否已經(jīng)理解,可以再畫一些不同的街道網(wǎng)絡(luò),然后用這種算法來確定從任意點(diǎn)A到另一任意點(diǎn)B的最短路線共有多少條。網(wǎng)絡(luò)可以是矩形網(wǎng)格,三角形網(wǎng)格,平行四邊形網(wǎng)格和蜂窩狀的正六邊形網(wǎng)格。也可以用其他方法(例如組合公式)求解,但這種方法十分復(fù)雜,需要很高的技巧。在國際象棋棋盤上,“車”從棋盤的一角到對角線上另一角的最短路徑共有多少條?就像蘇珊給街道交點(diǎn)標(biāo)上數(shù)字一樣,把棋盤上所有格子也都填上數(shù)字,于是問題就迎刃而解了?!败嚒敝荒苎刂疑戏较虺硪粋€(gè)角的目標(biāo)移動(dòng),便可以求出共有多少條最短路徑。如圖所示:183612033079217163432172884210462924171616215612625246279215153570126210330141020355684120136101521283612345678車1111111把整個(gè)棋盤正確標(biāo)號,根據(jù)所標(biāo)的數(shù)字,一眼就能看出在棋盤上從一個(gè)角出發(fā)到任意一角,所以“車”從一角到對角線的另一角的最短路徑共有3432條。讓我們把棋盤沿著左上至右下的對角線一截為二,使其成為如下圖所示的陣列。此三角形上的數(shù)字與著名的帕斯卡三角形(我國叫做楊輝三角形)的數(shù)字是相同的,當(dāng)然,計(jì)算街道路徑條數(shù)的算法,恰恰就是構(gòu)造帕斯卡三角形所依據(jù)的過程。這種同構(gòu)現(xiàn)象使得帕斯卡三角形成為無數(shù)有趣特性的不竭的源泉?! ?  11  121  1331  14641  ……  利用帕斯卡三角形立即可以求出二項(xiàng)式展開的系數(shù),即求(a+b)的任意次冪,同樣也可以用來解出初等概率論中的許多問題。請注意,上圖中自頂部至底部,從邊沿一格來說是1,隨著向中間移動(dòng),數(shù)字逐漸增加。也許你見過根據(jù)怕斯卡三角形所制成的一種裝置:在一快傾斜的板上,成百個(gè)小球滾過木釘進(jìn)入各格的底部。全部小球呈現(xiàn)出一條鐘形的二項(xiàng)式分布曲線,因?yàn)榈竭_(dá)每個(gè)底部孔位的最短路徑的條數(shù)就是二項(xiàng)式展開的系數(shù)?! ★@然,蘇珊的算法同樣適用于由矩陣格子組成的三維結(jié)構(gòu)。設(shè)有一個(gè)邊長為3的立方體,分成27個(gè)立方體單元,把它看成棋盤,處于某一個(gè)角格上的“車”可以向三個(gè)坐標(biāo)上的任何位置作直線移動(dòng),試問“車”到空間對角線的另一個(gè)角格有多少條最短路徑?
點(diǎn)擊復(fù)制文檔內(nèi)容
數(shù)學(xué)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1