【總結(jié)】立體幾何(幾何法)—等體積轉(zhuǎn)化例1(2013年高考上海卷(理))如圖,在長方體ABCD-A1B1C1D1中,AB=2,AD=1,A1A=1,證明直線BC1平行于平面DA1C,并求直線BC1到平面D1AC的距離.【答案】因為ABCD-A1B1C1D1為長方體,故,故ABC1D1為平行四邊形,故,顯然B不在平面D1AC上,于是直線BC1平行于平面DA1C;直線BC1到平面D1
2025-06-24 19:01
【總結(jié)】1用空間向量處理立體幾何的問題立體幾何著重的是研究點、線、面之間的關(guān)系,研究空間三種位置關(guān)系(即空間直線與直線、直線與平面、平面與平面)以及三種角(異面直線所成的角、直線與平面所成的角和二面角)的計算。自上海高考試卷內(nèi)容改革以來,純粹用立體幾何的公理、定理來證明或計算立體幾何問題越來越少,而借助于向量的計算方法來處理立體幾何的問題卻越來越多。本講座就是詳細
2025-08-27 17:12
【總結(jié)】10《高中復(fù)習(xí)資料》數(shù)學(xué)1.甲烷分子由一個碳原子和四個氫原子組成,其空間構(gòu)型為一正四面體,碳原子位于該正四面體的中心,個點(體積忽略不計),且已知碳原子與每個氫原子間的距離都為,則以四個氫原子為頂點的這個正四面體的體積為()A,B,C,D,2.夾在兩個平行平面之間的球,圓柱,圓錐在這兩個平面上的射影
2025-04-17 13:10
【總結(jié)】立體幾何高考真題大題1.(2016高考新課標1卷)如圖,在以A,B,C,D,E,F為頂點的五面體中,面ABEF為正方形,AF=2FD,,且二面角D-AF-E與二面角C-BE-F都是.(Ⅰ)證明:平面ABEF平面EFDC;(Ⅱ)求二面角E-BC-A的余弦值.【答案】(Ⅰ)見解析;(Ⅱ)【解析】試題分析:(Ⅰ)先證明平面,結(jié)合平面,可得平面平面.(Ⅱ
2025-04-17 07:37
【總結(jié)】第一篇:向量法在立體幾何中的運用 龍源期刊網(wǎng)://. 向量法在立體幾何中的運用 作者:何代芬 來源:《中學(xué)生導(dǎo)報·教學(xué)研究》2013年第27期 摘要:在近幾年的高考中利用向量的模和夾角公式求...
2025-10-12 23:33
【總結(jié)】立體幾何平行證明題二、平面與平面平行:)//,:(//::1??????????則若用符號表示為記為平行與平面則稱平面沒有公共點與平面平面定義???,、2、判定方法??????????////////:??????????或其它方法aa②baba,、///
2025-08-05 09:40
【總結(jié)】1基礎(chǔ)題題庫三立體幾何201..已知過球面上A、B、C三點的截面和球心的距離等于球半徑的一半,且AB=BC=AC=2,求球的體積。解析:過A、B、C三點截面的小圓的半徑就是正△ABC的外接圓的半徑332,它是Rt△中060所對的邊,其斜邊為34,即球的半徑為34,∴?81256?V;202.正
2025-08-20 20:22
【總結(jié)】(2012江西?。ū拘☆}滿分12分)如圖,在梯形ABCD中,AB∥CD,E,F(xiàn)是線段AB上的兩點,且DE⊥AB,CF⊥AB,AB=12,AD=5,BC=4,DE=△ADE,△CFB分別沿DE,CF折起,使A,B兩點重合與點G,得到多面體CDEFG.(1)求證:平面DEG⊥平面CFG;(2)求多面體CDEFG的體積。2012,山東(19)(本小題滿分12分)如圖,
2025-04-17 13:07
【總結(jié)】立體幾何大題1.如下圖,一個等腰直角三角形的硬紙片ABC中,∠ACB=90°,AC=4cm,CD是斜邊上的高沿CD把△ABC折成直二面角.ABC第1題圖ABCD第1題圖(1)如果你手中只有一把能度量長度的直尺,應(yīng)該如何確定A,B的位置,使二面角A-CD-B是直二面角?證明你的結(jié)論.(2)試在平面AB
2025-04-17 13:17
【總結(jié)】;菲華論壇;在西墎城,要小心壹點.壹旦有人對付烈焰,你就立刻帶著所有烈焰の人,進入鞠氏宅院.”鞠言對高鳳說道.“嗯,俺明白.”高鳳點頭.她也想跟著鞠言壹起走,但是,她不能將整個烈焰商會扔下.至于帶著烈焰の所有人跟鞠言走,那就更不可能了.“事不宜遲,鞠言,俺們立刻返回藍曲郡城.”鄒尚云揮手說道.兩人當即,便離開西墎
2025-08-04 23:24
【總結(jié)】第一篇:立體幾何題證明方法 立體幾何題型與方法 1.平面的基本性質(zhì):掌握三個公理及推論,會說明共點、共線、共面問題。 (1)證明點共線的問題,一般轉(zhuǎn)化為證明這些點是某兩個平面的公共點(依據(jù):由點...
2025-11-06 05:28
【總結(jié)】立體幾何基礎(chǔ)訓(xùn)練題及詳解1.平面平面的基本性質(zhì):掌握三個公理及推論,會說明共點、共線、共面問題。(1).證明點共線的問題,一般轉(zhuǎn)化為證明這些點是某兩個平面的公共點(依據(jù):由點在線上,線在面內(nèi),推出點在面內(nèi)),這樣可根據(jù)公理2證明這些點都在這兩個平面的公共直線上。(2).證明共點問題,一般是先證明兩條直線交于一點,再證明這點在第三條直線上,而這一點是兩個平面的公共點,這第三條直
2025-06-07 21:33
【總結(jié)】空間向量的引入為代數(shù)方法處理立體幾何問題提供了一種重要的工具和方法,解題時,可用定量的計算代替定性的分析,從而回避了一些嚴謹?shù)耐评碚撟C。求空間角與距離是立體幾何的一類重要的問題,也是高考的熱點之一。本節(jié)課主要是討論怎么樣用向量的辦法解決空間角與距離的問題。建立空間直角坐標系,解立體幾何題1122330???abab
2025-10-31 01:53
【總結(jié)】立體幾何的解題思路四川省成都第七中學(xué)張世永巢中俊周建波《高中數(shù)學(xué)課程標準》建議:立體幾何教學(xué)應(yīng)注意引導(dǎo)學(xué)生通過對實際模型的認識,、線、面關(guān)系作為載體,使學(xué)生在直觀感知的基礎(chǔ)上,認識空間中一般的點、線、面之間的位置關(guān)系;通過對圖形的觀察、實驗和說明,使學(xué)生進一步了解平行、垂直關(guān)系的基本性質(zhì)以及判定方法,學(xué)會準確地使用數(shù)學(xué)語言表述幾何對象的位置關(guān)系,并能解決一些簡單的推理論證及應(yīng)
2025-07-24 12:13
【總結(jié)】立體幾何——建坐標系1.如圖,四棱錐S-ABCD中,AB∥CD,BC⊥CD,側(cè)面SAB為等邊三角形.AB=BC=2,CD=SD=1.(Ⅰ)證明:SD⊥平面SAB;(Ⅱ)求AB與平面SBC所成的角的大小.2.如圖,在四面體ABOC中,OC⊥OA,OC⊥OB,∠AOB=120°,且OA=OB=OC=1.(Ⅰ)設(shè)P為AC的中點,Q在AB上且AB
2025-06-17 02:07