【總結(jié)】八仙中學(xué)楊桂花復(fù)習(xí)指導(dǎo):請(qǐng)結(jié)合課本內(nèi)容完成復(fù)習(xí)提綱中的題目,有困難的地方可小組內(nèi)討論。(一)1、什么樣的圖形叫做圓?并結(jié)合圖形說(shuō)說(shuō)什么是圓心,半徑,弦,直徑,半圓,優(yōu)弧,劣弧。(舉出一個(gè)例子即可)2、圓上各點(diǎn)到定點(diǎn)的距離相等嗎,到定點(diǎn)的距離相等的點(diǎn)在哪里?因此圓又可以看成怎樣的圖形?3、什么樣的角是圓心角,什么樣的角是
2024-11-23 10:46
【總結(jié)】高二數(shù)學(xué)教(學(xué))案揚(yáng)州市第一中學(xué)第1頁(yè)共4頁(yè)課題:橢圓的幾何性質(zhì)(2)教學(xué)目標(biāo):(對(duì)稱(chēng)性、范圍、頂點(diǎn)、離心率);.教學(xué)重、難點(diǎn):目標(biāo)1;數(shù)形結(jié)合思想的貫徹,運(yùn)用曲線方程研究幾何性質(zhì).一.教學(xué)過(guò)程:(一)復(fù)習(xí)
2025-08-26 18:33
【總結(jié)】課題:橢圓的簡(jiǎn)單幾何性質(zhì)設(shè)計(jì)意圖:本節(jié)內(nèi)容是橢圓的簡(jiǎn)單幾何性質(zhì),是在學(xué)習(xí)了橢圓的定義和標(biāo)準(zhǔn)方程之后展開(kāi)的,它是繼續(xù)學(xué)習(xí)雙曲線、拋物線的幾何性質(zhì)的基礎(chǔ)。因此本節(jié)內(nèi)容起到一個(gè)鞏固舊知,熟練方法,拓展新知的承上啟下的作用,是發(fā)展學(xué)生自主學(xué)習(xí)能力,培養(yǎng)創(chuàng)新能力的好素材。本教案的設(shè)計(jì)遵循啟發(fā)式的教學(xué)原則,以培養(yǎng)學(xué)生的數(shù)形結(jié)合的思想方法,培養(yǎng)學(xué)生觀察、實(shí)驗(yàn)、探究、驗(yàn)證與交流等數(shù)學(xué)活動(dòng)能力。教學(xué)目
2025-04-17 04:22
【總結(jié)】圓的切線的判定與性質(zhì)【知識(shí)點(diǎn)精析】1.直線與圓有三種位置關(guān)系,其中直線與圓只有唯一的公共點(diǎn),叫直線與圓相切,這個(gè)公共點(diǎn)叫切點(diǎn)。這條直線叫圓的切線。2.圓的切線的判定與性質(zhì):(1)判定:經(jīng)過(guò)半徑外端并且垂直于這條半徑的直線是圓的切線。判定一條直線是圓的切線需要滿(mǎn)足以下兩個(gè)條件:①經(jīng)過(guò)半徑外端②垂直于半徑 (2)圓的切線的性質(zhì):圓的切線垂直于過(guò)切點(diǎn)的半徑。
2025-06-22 15:49
【總結(jié)】2022/8/201課題:說(shuō)課案說(shuō)課人:段成勇單位:開(kāi)遠(yuǎn)一中課件制作:佘維平2022/8/202?一、教材分析1、本節(jié)教材的地位和作用由曲線方程研究曲線的幾何性質(zhì),并正確地畫(huà)出它的圖形,是解析幾何所研究的主要問(wèn)題之一,本課就是根
2025-07-23 05:45
【總結(jié)】質(zhì)D復(fù)習(xí)思考?橢圓的定義、標(biāo)準(zhǔn)方程是什么??平面上到兩個(gè)定點(diǎn)的距離的和(2a)等于定長(zhǎng)(大于|F1F2|)的點(diǎn)的軌跡叫橢圓。?定點(diǎn)F1、F2叫做橢圓的焦點(diǎn)。?兩焦點(diǎn)之間的距離叫做焦距(2C)。)0(12222????babyax)0(12222?
2025-07-25 14:44
【總結(jié)】標(biāo)準(zhǔn)方程范圍對(duì)稱(chēng)性頂點(diǎn)坐標(biāo)焦點(diǎn)坐標(biāo)半軸長(zhǎng)離心率a、b、c的關(guān)系22221(0)xyabab????|x|≤a,|y|≤b關(guān)于x軸、y軸成軸對(duì)稱(chēng);關(guān)于原點(diǎn)成中心對(duì)稱(chēng)(a,0)、(-a,0)、(0,b)、(0,-b)(c,0)、(-c,0)長(zhǎng)半軸
2025-05-10 00:31
【總結(jié)】解析幾何大題的解題技巧(只包括橢圓和拋物線)。一、設(shè)點(diǎn)或直線做題一般都需要設(shè)點(diǎn)的坐標(biāo)或直線方程,其中點(diǎn)或直線的設(shè)法有很多種。直線與曲線的兩個(gè)交點(diǎn)一般可以設(shè)為(x1,y1),(x2,y2),等。對(duì)于橢圓上的唯一的動(dòng),還可以設(shè)為,在拋物線上的點(diǎn),也可以設(shè)為。還要注意的是,很多點(diǎn)的坐標(biāo)都是設(shè)而不求的。對(duì)于一條直線,如果過(guò)定點(diǎn)(x0,y0)并且不與y軸平行,可以設(shè)點(diǎn)斜式y(tǒng)-y0=k
2025-08-09 15:40
【總結(jié)】橢圓的幾何性質(zhì)一、概念及性質(zhì)“范圍、對(duì)稱(chēng)性、頂點(diǎn)、軸長(zhǎng)、焦距、離心率及范圍、a,b,c的關(guān)系”;:::主要用來(lái)求離心率的取值范圍,對(duì)于此問(wèn)題也可以用下列性質(zhì)求解:.::【注】:橢圓的幾何性質(zhì)是高考的熱點(diǎn),高考中多以小題出現(xiàn),試題難度一般較大,高考對(duì)橢圓幾何性質(zhì)的考查主要有以下三個(gè)命題角度:(1)根據(jù)橢圓的性質(zhì)求參數(shù)的值或范圍;(2)由性質(zhì)寫(xiě)橢圓的標(biāo)準(zhǔn)方程;
2025-03-25 04:50
【總結(jié)】出題人:李秋天陳繼波鄒玉超【學(xué)習(xí)目標(biāo)】1.熟練掌握橢圓的范圍,對(duì)稱(chēng)性,頂點(diǎn)等簡(jiǎn)單幾何性質(zhì)2.掌握標(biāo)準(zhǔn)方程中的幾何意義,以及的相互關(guān)系3.理解、掌握坐標(biāo)法中根據(jù)曲線的方程研究曲線的幾何性質(zhì)的一般方法【學(xué)習(xí)重點(diǎn)】:橢圓的幾何性質(zhì)【學(xué)習(xí)難點(diǎn)】:如何貫徹
2025-07-24 04:51
【總結(jié)】典型例題一例1橢圓的一個(gè)頂點(diǎn)為,其長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,求橢圓的標(biāo)準(zhǔn)方程.分析:題目沒(méi)有指出焦點(diǎn)的位置,要考慮兩種位置.解:(1)當(dāng)為長(zhǎng)軸端點(diǎn)時(shí),,,橢圓的標(biāo)準(zhǔn)方程為:;(2)當(dāng)為短軸端點(diǎn)時(shí),,,橢圓的標(biāo)準(zhǔn)方程為:;說(shuō)明:橢圓的標(biāo)準(zhǔn)方程有兩個(gè),給出一個(gè)頂點(diǎn)的坐標(biāo)和對(duì)稱(chēng)軸的位置,是不能確定橢圓的橫豎的,因而要考慮兩種情況.典型例題二例2一個(gè)
【總結(jié)】圓的有關(guān)性質(zhì)圓圓的定義有關(guān)概念圓的基本性質(zhì)圓心、半徑、直徑弧、弦、弦心距半圓、等圓、同心圓圓心角、圓周角圓的內(nèi)接多邊形多邊形的外接圓等。圓的中心對(duì)稱(chēng)性和旋轉(zhuǎn)不變性圓的軸對(duì)稱(chēng)性垂徑定理弧、弦、圓心角定理圓周角定理重點(diǎn)圓的定義(運(yùn)動(dòng)觀點(diǎn))?在一個(gè)平面內(nèi)
2024-11-23 12:16
【總結(jié)】《橢圓的簡(jiǎn)單幾何性質(zhì)》教學(xué)設(shè)計(jì)【教學(xué)目標(biāo)】:(1).使學(xué)生掌握橢圓的性質(zhì),能根據(jù)性質(zhì)正確地作出橢圓草圖;掌握橢圓中a、b、c的幾何意義及相互關(guān)系;(2)通過(guò)對(duì)橢圓標(biāo)準(zhǔn)方程的討論,使學(xué)生知道在解析幾何中是怎樣用代數(shù)方法研究曲線性質(zhì)的,逐步領(lǐng)會(huì)解析法(坐標(biāo)法)的思想。(3)能利用橢圓的性質(zhì)解決實(shí)際問(wèn)題。:培養(yǎng)學(xué)生觀察、分析、抽象、概括的邏輯思維能力和運(yùn)用數(shù)形
2025-04-17 04:14
【總結(jié)】橢圓的標(biāo)準(zhǔn)方程及其幾何性質(zhì)1.橢圓定義:(1)第一定義:平面內(nèi)與兩個(gè)定點(diǎn)的距離之和為常數(shù)的動(dòng)點(diǎn)的軌跡叫橢圓,其中兩個(gè)定點(diǎn)叫橢圓的焦點(diǎn).當(dāng)時(shí),的軌跡為橢圓;;當(dāng)時(shí),的軌跡不存在;當(dāng)時(shí),的軌跡為以為端點(diǎn)的線段(2)橢圓的第二定義:平面內(nèi)到定點(diǎn)與定直線(定點(diǎn)不在定直線上)的距離之比是常數(shù)()的點(diǎn)的軌跡為橢圓(利用第二定義,可以實(shí)現(xiàn)橢圓
2025-07-15 00:24
【總結(jié)】解析幾何解題方法集錦 俗話說(shuō):“知己知彼,才能百戰(zhàn)百勝”,這一策略,同樣可以用于高考復(fù)習(xí)之中。我們不僅要不斷研究教學(xué)大綱、考試說(shuō)明和教材,而且還必須研究歷年高考試題,從中尋找規(guī)律,這樣才有可能以不變應(yīng)萬(wàn)變,才有可能在高考中取得優(yōu)異成績(jī)??v觀近幾年的高考解析幾何試題,可以發(fā)現(xiàn)有這樣的規(guī)律:小題靈活,大題穩(wěn)定。一、解決解析幾何問(wèn)題的幾條原則1.重視“數(shù)形結(jié)合”的數(shù)學(xué)思想2.注重平面幾
2024-10-04 16:31