【總結(jié)】......初二上動點問題1.如圖,已知△ABC中,∠B=90o,AB=8cm,BC=6cm,P、Q是△ABC邊上的兩個動點,其中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C→A方向
2025-03-24 12:38
【總結(jié)】動點的軌跡問題根據(jù)動點的運動規(guī)律求出動點的軌跡方程,這是解析幾何的一大課題:一方面求軌跡方程的實質(zhì)是將“形”轉(zhuǎn)化為“數(shù)”,將“曲線”轉(zhuǎn)化為“方程”,通過對方程的研究來認(rèn)識曲線的性質(zhì);另一方面求軌跡方程是培養(yǎng)學(xué)生數(shù)形轉(zhuǎn)化的思想、方法以及技巧的極好教材。該內(nèi)容不僅貫穿于“圓錐曲線”的教學(xué)的全過程,而且在建構(gòu)思想、函數(shù)方程思想、化歸轉(zhuǎn)化思想等方面均有體現(xiàn)和滲透。軌跡問題是高考中的一個熱點
2025-03-24 12:53
【總結(jié)】......圓中的動態(tài)問題【方法點撥】圓中的動態(tài)問題實際是圓的分類討論問題,做這種題型重要的是如何將動點轉(zhuǎn)化為固定的點,從而將題型變?yōu)榉诸愑懻摗镜湫屠}】題型一:圓中的折疊問題例題一(2012
2025-03-25 00:00
【總結(jié)】《相交線與平行線綜合探究型題》 1.(2014春?棲霞市期末)如圖1,直線MN與直線AB、CD分別交于點E、F,∠1與∠2互補.(1)試判斷直線AB與直線CD的位置關(guān)系,并說明理由;(2)如圖2,∠BEF與∠EFD的角平分線交于點P,EP與CD交于點G,點H是MN上一點,且GH⊥EG,求證:PF∥GH;(3)如圖3,在(2)的條件下,連接PH,K是GH上一點使∠PHK=
2025-03-25 03:17
【總結(jié)】動點問題專題訓(xùn)練1、如圖,已知中,厘米,厘米,點為的中點.(1)如果點P在線段BC上以3厘米/秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.AQCDBP①若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,與是否全等,請說明理由;②若點Q的運動速度與點P的運動速度不相等,當(dāng)點Q的運動速度為多少時,能夠使與全等?(2)若點Q以②中的運動
2025-01-14 17:42
【總結(jié)】......七年級線段動點問題1、如圖1,直線AB上有一點P,點M、N分別為線段PA、PB的中點AB=14.(1)若點P在線段AB上,且AP=8,則線段MN
2025-03-25 07:09
【總結(jié)】完美WORD格式資料明確以下幾個問題:1.?dāng)?shù)軸上兩點間的距離,即為這兩點所對應(yīng)的坐標(biāo)差的絕對值,也即用右邊的數(shù)減去左邊的數(shù)的差。即數(shù)軸上兩點間的距離=右邊點表示的數(shù)-左邊點表示的數(shù)。2.點在數(shù)軸上運動時,由于數(shù)軸向右的方向為正方向,因此向右運動的速度
2025-04-04 03:53
【總結(jié)】......動點問題所謂“動點型問題”是指題設(shè)圖形中存在一個或多個動點,它們在線段、,靈活運用有關(guān)數(shù)學(xué)知識解決問題.關(guān)鍵:動中求靜.數(shù)學(xué)思想:分類思想數(shù)形結(jié)合思想轉(zhuǎn)化思想1、如圖1,梯形ABCD中,AD∥
2025-06-18 06:53
【總結(jié)】本資料來源于《七彩教育網(wǎng)運動變化型問題專題復(fù)習(xí)例1如圖在Rt△ABC中,∠C=90°,AC=12,BC=16,動點P從點A出發(fā)沿AC邊向點C以每秒3個單位長的速度運動,動點Q從點C出發(fā)沿CB邊向點B以每秒4個單位長的速度運動.P,Q分別從點A,C同時出發(fā),當(dāng)其中一點到達(dá)端點時,另一點也隨之停止運動.在運動過程中,△PCQ關(guān)于直線PQ對稱的圖形是△PDQ.設(shè)運動時間為
2025-04-04 03:46
【總結(jié)】動點問題(與圓相關(guān))1.如圖,在平面直角坐標(biāo)系中,四邊形OABC是梯形,BC∥AO,頂點O在坐標(biāo)原點,頂點A(4,0),頂點B(1,4).動點P從O出發(fā),以每秒1個單位長度的速度沿OA的方向向A運動;同時,動點Q從A出發(fā),以每秒2個單位長度的速度沿A→B→C的方向向C運動.當(dāng)其中一個點到達(dá)終點時,另一個也隨之停止.設(shè)運動時
【總結(jié)】數(shù)學(xué)因運動而充滿活力,數(shù)學(xué)因變化而精彩紛呈。動態(tài)題是近年來中考的的一個熱點問題,以運動的觀點探究幾何圖形的變化規(guī)律問題,稱之為動態(tài)幾何問題,隨之產(chǎn)生的動態(tài)幾何試題就是研究在幾何圖形的運動中,伴隨著出現(xiàn)一定的圖形位置、數(shù)量關(guān)系的“變”與“不變”性的試題,就其運動對象而言,有點動、線動、面動三大類,就其運動形式而言,有軸對稱(翻折)、平移、旋轉(zhuǎn)(中心對稱、滾動)等,就問題類型而言,有函數(shù)關(guān)系和圖
2025-04-04 03:44
【總結(jié)】浙教版初中數(shù)學(xué)關(guān)于動點問題的總結(jié)“動點型問題”是指題設(shè)圖形中存在一個或多個動點,它們在線段、關(guān)鍵:動中求靜.數(shù)學(xué)思想:分類思想函數(shù)思想方程思想數(shù)形結(jié)合思想轉(zhuǎn)化思想一、建立函數(shù)解析式函數(shù)揭示了運動變化過程中量與量之間的變化規(guī)律,和動點問題反映的是一種函數(shù)思想,由于某一個點或某圖形的有條件地運動變化,引起未知量與已知量間的一種變化關(guān)系,一、應(yīng)用勾股定理建立
2025-04-04 04:45
【總結(jié)】動點問題生成的函數(shù)圖象專題學(xué)習(xí)目標(biāo):..典型例題B.OSOC.D.A.OtSttOSSt,已知A、B是反比例函數(shù)(k>0,x<0)圖象上的兩點,BC∥x軸,,沿O→A→B→C(圖中“→”所示路線)勻速運動,⊥x軸,PN⊥y軸,垂足分別為M、,P點運動時間為t,則S關(guān)于t的函數(shù)圖象大致為(),AB=
2025-06-07 16:22
【總結(jié)】所謂“動點型問題”是指題設(shè)圖形中存在一個或多個動點,它們在線段、射線或弧線上運動的一類開放性題目.解決這類問題的關(guān)鍵是動中求靜,靈活運用有關(guān)數(shù)學(xué)知識解決問題.1.如圖,已知AB是兩同心圓的大圓的直徑,P為小圓上的一動點,若兩圓的半徑分別為5和2,且PA2+PB2的值為定值,則這個定值為_
2025-08-05 02:12
2024-11-06 17:02