【總結(jié)】基本不等式題型歸納【重點知識梳理】1.基本不等式:(1)基本不等式成立的條件:,.(2)等號成立的條件:當(dāng)且僅當(dāng)時,等號成立.2.幾個重要的不等式:(1)();(2)();(3)();(4)().3.算術(shù)平均數(shù)與幾何平均數(shù)設(shè),,則的算術(shù)平均數(shù)為,幾何平均數(shù)為,基本不等式可敘述為兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù).4.利用基本不等式求最值問題
2025-03-25 00:14
【總結(jié)】均值不等式一、基本知識梳理:如果a﹑b∈R+,那么叫做這兩個正數(shù)的算術(shù)平均值.:如果a﹑b∈R+,那么叫做這兩個正數(shù)的幾何平均值:如果a﹑b∈R,那么a2+b2≥(當(dāng)且僅當(dāng)a=b時,取“=”)均值定理:如果a﹑b∈R+,那么≥(當(dāng)且僅
2025-03-25 00:08
【總結(jié)】含參數(shù)的一元二次不等式的解法解含參數(shù)的一元二次不等式,通常情況下,均需分類討論,那么如何討論呢?對含參一元二次不等式常用的分類方法有三種:一、按項的系數(shù)的符號分類,即;例1解不等式:分析:本題二次項系數(shù)含有參數(shù),,故只需對二次項系數(shù)進(jìn)行分類討論。解:∵解得方程兩根∴當(dāng)時,解集為當(dāng)時,不等式為,解集為當(dāng)時,解集為
2025-03-24 23:42
【總結(jié)】數(shù)形結(jié)合解不等式和數(shù)形結(jié)合解含參數(shù)不等式問題教案(新授)一、教學(xué)任務(wù)分析:教學(xué)目標(biāo)知識技能要求學(xué)生了解數(shù)形結(jié)合的基本思路、理解數(shù)形結(jié)合的含義及其與不等式的結(jié)合數(shù)學(xué)思考深入體會抽象的數(shù)學(xué)語言與直觀的幾何圖形之間的關(guān)系解決問題學(xué)會使用數(shù)形結(jié)合思想解決不等式及含參數(shù)的不等式問題情感態(tài)度通過由淺入深的教學(xué)方法增加學(xué)生的求知欲重點抽象的數(shù)學(xué)語言與直觀的
2025-08-18 16:59
【總結(jié)】含參一元二次不等式的解法溫縣第一高級中學(xué)數(shù)學(xué)組任利民解含參一元二次不等式,常涉及對參數(shù)的分類討論以確定不等式的解,:①比較兩根大小;②判別式的符號;③.一、根據(jù)二次不等式所對應(yīng)方程的根的大小分類例1解關(guān)于的不等式.分析:原不等式等價于,所對應(yīng)方程的兩根是,.解:原不等式等價于,所對應(yīng)方程的兩根是或.當(dāng)時,有,所以不等式的解集為或.當(dāng)時,有,所
2025-06-25 16:54
【總結(jié)】含參一元二次不等式專題訓(xùn)練 解答題(共12小題)1.已知不等式(ax﹣1)(x+1)<0(a∈R).2.解關(guān)于x的不等式:x2+(a+1)x+a>0(a是實數(shù)).(1)若x=a時不等式成立,求a的取值范圍;(2)當(dāng)a≠0時,解這個關(guān)于x的不等式. 3.解關(guān)于x的不等式ax2+2x﹣1<0(a>0).4
2025-03-24 23:41
【總結(jié)】Mathwang幾個經(jīng)典不等式的關(guān)系一幾個經(jīng)典不等式(1)均值不等式設(shè)是實數(shù),等號成立.(2)柯西不等式設(shè)是實數(shù),則當(dāng)且僅當(dāng)或存在實數(shù),使得時,等號成立.(3)排序不等式設(shè),為兩個數(shù)組,是的任一排列,則當(dāng)且僅當(dāng)或時,等號成立.(4)切比曉夫不等式對于兩個數(shù)組:,,有當(dāng)且僅當(dāng)或時,等號成立.二相關(guān)證明(1)用排
2025-04-17 08:24
【總結(jié)】......,且,則下列不等式成立的是(A)(B)(C)(D),若關(guān)于x的不等式在R上恒成立,則a的取值范圍是(A) (B) (C)
2025-03-24 05:47
【總結(jié)】......不等式一、知識點:1.實數(shù)的性質(zhì):;;.2.不等式的性質(zhì):性質(zhì)內(nèi)容對稱性,.傳遞性且.加法性質(zhì);且.乘法性質(zhì)
2025-06-24 19:24
【總結(jié)】《不等式》常見考試題型總結(jié)一、高考與不等式高考試題,有關(guān)不等式的試題約占總分的12%左右,主要考查不等式的基本知識,基本技能,以及學(xué)生的運(yùn)算能力,邏輯思維能力,分析問題和解決問題的能力.選擇題和填空題主要考查不等式的性質(zhì)、比較大小和解簡單不等式,還可能與函數(shù)、方程等內(nèi)容相結(jié)合的小綜合.解答題主要是解不等式或證明不等式或以其他知識為載體的綜合題。不等式常與下列知識相結(jié)合考查:①不等式
2025-06-05 22:47
【總結(jié)】不等式的解題歸納第一部分含參數(shù)不等式的解法例1解關(guān)于x的不等式例2.解關(guān)于x的不等式:(x-+12)(x+a)0的解集為{x︱-3x5},求a、b的值.例5已知關(guān)于x的二次不等式:a+(a-1)x+
2025-04-04 05:02
【總結(jié)】12.掌握利用導(dǎo)數(shù)解決實際生活中的優(yōu)化問題的方法和步驟,如用料最少、費用最低、消耗最省、利潤最大、效率最高等..掌握導(dǎo)數(shù)與不等式、幾何等綜合問題的解題方法.????21(0)31
2024-09-28 08:09
【總結(jié)】不等式與不等式組測試姓名__________學(xué)號____一、選擇題(每題4分,共32分)1.不等式axb?的解集是bxa?,那么a的取值范圍是???????()A.0a?B.0a?C.0a?D.0a?2.不等式2135xx???的正整數(shù)解的個數(shù)是??
2024-11-11 04:58
【總結(jié)】高中數(shù)學(xué)知識專項系列講座含參數(shù)不等式的解法一、含參數(shù)不等式存在解的問題如果不等式(或)的解集是D,的某個取值范圍是E,且DE,則稱不等式在E內(nèi)存在解(或稱有解,有意義).例1.(1)不等式的解集非空,求的取值范圍;(2)不等式的解集為空集,求的取值范圍.(分析:解集非空即指有解,有意義,解集為即指無解(恒不成立),否定之后為恒成立,本題實質(zhì)上是成立與恒成立問題)解
2025-06-25 17:15
【總結(jié)】不等式和不等式組錢旭東淮安市啟明外國語學(xué)校蘇科版義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書九年級復(fù)習(xí)課回顧·知識一元一次不等式(組)的應(yīng)用一元一次不等式(組)的解法一元一次不等式(組)解集的含義一元一次不等式(組)的概念不等式的性質(zhì)一元一次不等式和一元一次不等式組回顧·知識:含
2024-10-12 13:38