【總結】含參不等式專題(淮陽中學)編寫:孫宜俊當在一個不等式中含有了字母,則稱這一不等式為含參數(shù)的不等式,那么此時的參數(shù)可以從以下兩個方面來影響不等式的求解,首先是對不等式的類型(即是那一種不等式)的影響,其次是字母對這個不等式的解的大小的影響。我們必須通過分類討論才可解決上述兩個問題,同時還要注意是參數(shù)的選取確定了不等式
2025-07-26 06:19
【總結】......含參不等式專題訓練1.對任意的實數(shù),不等式恒成立,則實數(shù)的取值范圍是()A.B.C.D.2.在上運算:,若對任意實數(shù)成立,則().A.B.C.
2025-03-24 23:42
【總結】不等式恒成立問題的處理恒成立問題在解題過程中大致可分為以下幾種類型:①一次函數(shù)型;②二次函數(shù)型;③其他類不等式恒成立一、一次函數(shù)型給定一次函數(shù)y=f(x)=ax+b(a≠0),若y=f(x)在[m,n]內(nèi)恒有f(x)0,則根據(jù)函數(shù)的圖象(直線)可得上述結論等價于?????0)(0)(nfmf同理,若在[m,n]內(nèi)恒有f(x
2025-01-09 10:08
【總結】確定不等式恒成立的參數(shù)的取值范圍,是中學數(shù)學教學的難點,也是高考的熱點。解答這類問題主要有四種方法:其一,利用一次函數(shù)的單調(diào)性;其二,利用二次函數(shù)的單調(diào)性;其三,分離參數(shù),轉(zhuǎn)化為求函數(shù)的最值;其四,利用數(shù)形結合法。換個角度看問題,換個方面去解釋,換個方向去思考.設一次函數(shù)f(x)=ax+b(a≠0),當a0
2025-11-01 01:05
【總結】不等式(3)----含參不等式的解法當在一個不等式中含有了字母,則稱這一不等式為含參數(shù)的不等式,那么此時的參數(shù)可以從以下兩個方面來影響不等式的求解,首先是對不等式的類型(即是那一種不等式)的影響,其次是字母對這個不等式的解的大小的影響。我們必須通過分類討論才可解決上述兩個問題,同時還要注意是參數(shù)的選取確定了不等式的解,而不是不等式的解來區(qū)分參數(shù)的討論。解參數(shù)不等式一直是高考所考查的重點內(nèi)
2025-06-16 12:16
【總結】......數(shù)學數(shù)列與不等式的綜合問題突破策略【題1】 等比數(shù)列{an}的公比q>1,第17項的平方等于第24項,求使a1+a2+…+an>恒成立的正整數(shù)n的范圍.【題2】設數(shù)列{an}的前項和為Sn.已知a1=a,an+1=Sn+3n,n∈N*.(1)設bn=Sn-3n,求數(shù)列{bn}的通項公式;(2)若an+1≥a
2025-03-25 02:51
【總結】眾所周知,不等式解法是不等式這一板塊的高考備考重點,其中,含有參數(shù)的不等式的問題,是主考命題的熱點,又是復習提高的難點。?。?)解不等式,尋求新不等式的解集; ?。?)已知不等式的解集(或這一不等式的解集與相關不等式解集之間的聯(lián)系),尋求新含參數(shù)的值或取值范圍?! 。?)注意到上述題型(2)的難度與復雜性,本專題對這一類含參不等式問題的解題策略作以探索與總結?! ∫?、立足于“直面
【總結】個性化教案授課時間:備課時間:年級:課時:課題:學員姓名:授課老師:教學目標教學難點(1),轉(zhuǎn)化為求具體函數(shù)的最值問題.(2),列不等式組求解.教學內(nèi)容復習引入:(1)x2+7x-30≤0(2)25x2+5x+10(3)-x2+
2025-03-24 05:31
【總結】含參數(shù)的一元二次不等式解法命題人:徐月玲2016年10月【學習目標】,并能解決一些實際問題。經(jīng)歷從實際情景中抽象出一元二次不等式模型的過程.、方程的聯(lián)系,會解一元二次不等式。,體會成功的快樂。【學習重點】從實際問題中抽象出一元二次不等式模型,圍繞一元二次不等式的解法展開,突出數(shù)形結合的思想?!緦W習難點】理解二次函數(shù)、一元二次方程與一元二次不等式解集的關系
2025-06-25 17:04
【總結】眾所周知,不等式解法是不等式這一板塊的高考備考重點,其中,含有參數(shù)的不等式的問題,是主考命題的熱點,又是復習提高的難點?!。?)解不等式,尋求新不等式的解集; ?。?)已知不等式的解集(或這一不等式的解集與相關不等式解集之間的聯(lián)系),尋求新含參數(shù)的值或取值范圍?! 。?)注意到上述題型(2)的難度與復雜性,本專題對這一類含參不等式問題的解題策略作以探索與總結?! ∫?、立足于“直面
【總結】含參一元二次不等式的解法溫縣第一高級中學數(shù)學組任利民解含參一元二次不等式,常涉及對參數(shù)的分類討論以確定不等式的解,:①比較兩根大小;②判別式的符號;③.一、根據(jù)二次不等式所對應方程的根的大小分類例1解關于的不等式.分析:原不等式等價于,所對應方程的兩根是,.解:原不等式等價于,所對應方程的兩根是或.當時,有,所以不等式的解集為或.當時,有,所
2025-06-25 16:54
【總結】山東省墾利第一中學高三一輪復習§一元二次不等式恒成立問題一元二次不等式恒成立問題“含參不等式恒成立問題”是數(shù)學中常見的問題,在高考中頻頻出現(xiàn),是高考中的一個難點問題。含參不等式恒成立問題涉及到一次函數(shù)、二次函數(shù)的性質(zhì)和圖像,滲透著換元、化歸、數(shù)形結合、函數(shù)與方程等思想方法,有利于考查學生的綜合解題能力,在培養(yǎng)思維的靈活性、創(chuàng)造性等方面起到了積極的作
【總結】一類最值不等式問題的求解通法羅增儒有一類最值不等式問題,可以一般地表示為:求證:有的地方也將其表示為雙重最值的形式:這類問題求解思路靈活,文[1]給出的多種解法主要涉及分類討論和反設歸謬,本文要提供的是一種直接求解的思路,只用到設元、消元運算,且具有明顯的可操作性。方法的示例例1.試證對任意的,有。分析:若將求證式左邊用字母x來表示,則問題便轉(zhuǎn)
2025-06-07 19:59
【總結】不等式與不等式組教材分析本章的主要內(nèi)容包括:一元一次不等式(組)及其相關概念,不等式的性質(zhì),一元一次不等式(組)的解法及其解集的幾何表示,利用一元一次不等式(組)分析與解決實際問題.其中,以不等式(組)為工具分析問題、解決問題是重點,也是教學中的主要難點;一元一次不等式(組)及其相關概念、不等式的性質(zhì)是基礎知識;掌握一元一次不等式(組)的解法及解集
2025-07-18 00:29
【總結】不等式的綜合問題典例分析【例1】若實數(shù)、、滿足,則稱比遠離.⑴若比遠離,求的取值范圍;⑵對任意兩個不相等的正數(shù)、,證明:比遠離;⑶已知函數(shù)的定義域.任取,等于和中遠離的那個值.寫出函數(shù)的解析式,并指出它的基本性質(zhì)(結論不要求證明).
2025-06-07 13:51