【總結(jié)】......含參不等式恒成立問題的求解策略“含參不等式恒成立問題”把不等式、函數(shù)、三角、幾何等內(nèi)容有機(jī)地結(jié)合起來,其以覆蓋知識點(diǎn)多,綜合性強(qiáng),解法靈活等特點(diǎn)而倍受高考、競賽命題者的青睞。另一方面,在解決這類問題的過程中涉及的“函數(shù)與方程”、“化歸與轉(zhuǎn)化”、“數(shù)形結(jié)合”、“分類討論”等數(shù)學(xué)思想對鍛煉學(xué)生的綜合解題能力,培養(yǎng)其思維的靈活性、創(chuàng)
2025-03-24 23:42
【總結(jié)】數(shù)形結(jié)合解不等式和數(shù)形結(jié)合解含參數(shù)不等式問題教案(新授)一、教學(xué)任務(wù)分析:教學(xué)目標(biāo)知識技能要求學(xué)生了解數(shù)形結(jié)合的基本思路、理解數(shù)形結(jié)合的含義及其與不等式的結(jié)合數(shù)學(xué)思考深入體會抽象的數(shù)學(xué)語言與直觀的幾何圖形之間的關(guān)系解決問題學(xué)會使用數(shù)形結(jié)合思想解決不等式及含參數(shù)的不等式問題情感態(tài)度通過由淺入深的教學(xué)方法增加學(xué)生的求知欲重點(diǎn)抽象的數(shù)學(xué)語言與直觀的
2025-08-18 16:59
【總結(jié)】含參一元二次不等式的解法溫縣第一高級中學(xué)數(shù)學(xué)組任利民解含參一元二次不等式,常涉及對參數(shù)的分類討論以確定不等式的解,:①比較兩根大小;②判別式的符號;③.一、根據(jù)二次不等式所對應(yīng)方程的根的大小分類例1解關(guān)于的不等式.分析:原不等式等價(jià)于,所對應(yīng)方程的兩根是,.解:原不等式等價(jià)于,所對應(yīng)方程的兩根是或.當(dāng)時(shí),有,所以不等式的解集為或.當(dāng)時(shí),有,所
2025-06-25 16:54
【總結(jié)】......不等式專題復(fù)習(xí)類型一:不等關(guān)系及解不等式1.若為實(shí)數(shù),則下列命題正確的是()A.若,則B.若,則C.若,則D.若,則2
2025-04-16 12:51
【總結(jié)】不等式基本訓(xùn)練(1)班級姓名得分一.選擇題1.若ab0,則下列不等式中不能成立的是()A、ba11?B、aba11??C、
2024-11-12 06:24
【總結(jié)】Mathwang幾個(gè)經(jīng)典不等式的關(guān)系一幾個(gè)經(jīng)典不等式(1)均值不等式設(shè)是實(shí)數(shù),等號成立.(2)柯西不等式設(shè)是實(shí)數(shù),則當(dāng)且僅當(dāng)或存在實(shí)數(shù),使得時(shí),等號成立.(3)排序不等式設(shè),為兩個(gè)數(shù)組,是的任一排列,則當(dāng)且僅當(dāng)或時(shí),等號成立.(4)切比曉夫不等式對于兩個(gè)數(shù)組:,,有當(dāng)且僅當(dāng)或時(shí),等號成立.二相關(guān)證明(1)用排
2025-04-17 08:24
【總結(jié)】初一不等式整數(shù)解問題專題訓(xùn)練初一( ?。┌唷⌒彰骸 W(xué)號:題號不等式組畫簡圖整數(shù)解情況a的取值范圍1有3個(gè)整數(shù)解:2有3個(gè)整數(shù)解:3有3個(gè)整數(shù)解:4有3個(gè)整數(shù)解:5有3個(gè)整數(shù)解:6有3個(gè)整數(shù)解:7有3個(gè)整數(shù)解:8
2025-03-24 12:29
【總結(jié)】含參數(shù)的不等式(組)LOREMIPSUMDOLOR(2)(2009·荊門)若不等式組???x+a≥01-2xx-2有解,則a的取值范圍是()A.a(chǎn)-1B.a(chǎn)≥-1C.a(chǎn)≤1D.a(chǎn)1【點(diǎn)撥】
2025-08-05 02:51
【總結(jié)】專題:幾何不等式 平面圖形中所含的線段長度、角的大小及圖形的面積在許多情形下會呈現(xiàn)不等的關(guān)系.由于這些不等關(guān)系出現(xiàn)在幾何問題中,故稱之為幾何不等式. 在解決這類問題時(shí),我們經(jīng)常要用到一些教科書中已學(xué)過的基本定理,本講的主要目的是希望大家正確運(yùn)用這些基本定理,通過幾何、三角、代數(shù)等解題方法去解決幾何不等式問題.這些問題難度較大,在解題中除了運(yùn)用不等式的性質(zhì)和已經(jīng)證明過的不等式外,還需考
2025-03-24 05:53
【總結(jié)】不等式專題復(fù)習(xí)類型一:不等關(guān)系及解不等式1.若為實(shí)數(shù),則下列命題正確的是()A.若,則B.若,則C.若,則D.若,則2.求下列不等式的解集.(1)x2+4x+4>0(2)(1﹣2x)(x﹣1)3(x+1)2<0(3)≥2.3.已知不等式的解集為,則不
【總結(jié)】不等式與不等式組測試姓名__________學(xué)號____一、選擇題(每題4分,共32分)1.不等式axb?的解集是bxa?,那么a的取值范圍是???????()A.0a?B.0a?C.0a?D.0a?2.不等式2135xx???的正整數(shù)解的個(gè)數(shù)是??
2024-11-11 04:58
【總結(jié)】高中數(shù)學(xué)知識專項(xiàng)系列講座含參數(shù)不等式的解法一、含參數(shù)不等式存在解的問題如果不等式(或)的解集是D,的某個(gè)取值范圍是E,且DE,則稱不等式在E內(nèi)存在解(或稱有解,有意義).例1.(1)不等式的解集非空,求的取值范圍;(2)不等式的解集為空集,求的取值范圍.(分析:解集非空即指有解,有意義,解集為即指無解(恒不成立),否定之后為恒成立,本題實(shí)質(zhì)上是成立與恒成立問題)解
2025-06-25 17:15
【總結(jié)】不等式和不等式組錢旭東淮安市啟明外國語學(xué)校蘇科版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書九年級復(fù)習(xí)課回顧·知識一元一次不等式(組)的應(yīng)用一元一次不等式(組)的解法一元一次不等式(組)解集的含義一元一次不等式(組)的概念不等式的性質(zhì)一元一次不等式和一元一次不等式組回顧·知識:含
2024-10-12 13:38
【總結(jié)】第一篇:不等式證明,均值不等式 1、設(shè)a,b?R,求證:ab3(ab)+aba+b23abba2、已知a,b,c是不全相等的正數(shù),求證:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc...
2024-11-03 17:10
【總結(jié)】第八講不等式與不等式組一、知識網(wǎng)絡(luò)結(jié)構(gòu)圖二、考點(diǎn)精析考點(diǎn)一:不等式基本性質(zhì)運(yùn)用1.由x0D.a2,則a的取值范圍是( ?。〢.a(chǎn)0B.aC.a&l