【總結(jié)】理論與實驗課教案首頁第13次課授課時間2016年12月9日第1~2節(jié)課教案完成時間2016年12月2日課程名稱高等數(shù)學(xué)教員職稱副教授專業(yè)層次藥學(xué)四年制本科年級2016授課方式理論學(xué)時2授課題目(章,節(jié))第六章空間解析幾何§§基本教材、主要參考書和相關(guān)網(wǎng)站基本教材
2025-07-23 13:45
【總結(jié)】《解析幾何》課程教學(xué)大綱課程名稱(英文):解析幾何(Analyticgeometry)課程編碼:B20211010課程類別:專業(yè)基礎(chǔ)課學(xué)時:40學(xué)分:考核方式:考試適用對象:信息與計算科學(xué)本科專業(yè)一、課程性質(zhì)、目的與任務(wù):《解析幾何》是信息與計算科學(xué)專業(yè)的一門專業(yè)基礎(chǔ)課。解析幾何的基本思想是用代數(shù)方法研究幾何問題。通過本課程的學(xué)習(xí),使學(xué)生
2025-01-18 04:55
【總結(jié)】問題引入xyOM(2,1)y=5x=745如何求呢?點到直線的距離1、點到直線距離定義定義:一般的,設(shè)點M(x0,y0)為直線l:Ax+By+C=0外一點,過M向AB引垂線,垂足為D,把線段MD的長d叫做點M到直線AB的距離。xylαoM(x0,
2025-08-05 18:21
【總結(jié)】模塊六向量代數(shù)與空間解析幾何(一)向量代數(shù)1.理解向量的概念,掌握向量的表示法,會求向量的模、非零向量的方向余弦和非零向量在軸上的投影。2.掌握向量的線性運算(加法運算與數(shù)量乘法運算),會求向量的數(shù)量積與向量積。3.會求兩個非零向量的夾角,掌握兩個非零向量平行、垂直的充分必要條件。(二)平面與直線1.會求平面的點法
2025-01-19 01:01
【總結(jié)】微積分Ⅰ1第七章向量代數(shù)與空間解析幾何§曲面及其方程一、曲面方程的概念二、柱面四、二次曲面三、旋轉(zhuǎn)曲面五、小結(jié)微積分Ⅰ2第七章向量代數(shù)與空間解析幾何水桶的表面、臺燈的罩子面等.曲面在空間解析幾何中被看成是點的幾何軌跡.1、曲面方程的定義曲面的實例:
2025-01-19 08:41
【總結(jié)】平面解析幾何的思維特征與研究方法平面解析幾何是中學(xué)數(shù)學(xué)中獨具特色的一門學(xué)科.它的基本思想是用代數(shù)方法解決幾何問題.解析幾何課復(fù)習(xí)的根本任務(wù)就是深刻領(lǐng)會“平面解析幾何”的基本思想,把握“平面解析幾何”這門學(xué)科的思維特點與方法.解析幾何的思維特征幾何特征:幾何對象的性質(zhì)及相互的位置關(guān)系
2025-05-15 10:47
【總結(jié)】第一部分主要內(nèi)容第二部分典型例題第一章空間解析幾何第一部分主要內(nèi)容一、向量代數(shù)二、空間解析幾何向量的線性運算向量的表示法向量積數(shù)量積向量的積向量概念一、向量代數(shù)如果向量},,{zyxaaaa??kajaiaazyx??????
2025-08-05 04:30
【總結(jié)】高二數(shù)學(xué)解析幾何(第19周)主講教師:梁尚志主審教師:胡明健【學(xué)習(xí)內(nèi)容】雙曲線(一)【學(xué)習(xí)要求】1.熟練掌握雙曲線的定義、方程、圖形及其幾何性質(zhì),并能根據(jù)其定義或其他已知條件求出相應(yīng)的方程。2.能熟練地根據(jù)雙曲線的方程,分別求出它們的實軸及虛軸的長、焦距、離心率、對稱中心、焦點坐標(biāo)、頂點坐標(biāo)、對稱軸方程、準(zhǔn)線方程及漸近線方程等。
2024-10-04 16:22
【總結(jié)】《直線和圓》常用結(jié)論1、傾斜角的定義及范圍:當(dāng)直線非水平線時,:[0,л)2、直線的斜率定義和斜率公式:斜率定義:(是直線的非直角傾斜角)斜率公式:過點的直線的斜率為:.斜率的幾何意義:非豎直直線上的任一個點向右運動一個單位,縱方向的改變量.3、把垂直于直線的向量叫做直線的法向量,.已知點,則(1)與向量平行的直線的方程可設(shè)為:;(2)與向量垂直的直線的方程可
2025-08-09 16:45
【總結(jié)】解析幾何中的基本公式1、兩點間距離:若,則2、平行線間距離:若則:注意點:x,y對應(yīng)項系數(shù)應(yīng)相等。3、點到直線的距離:則P到l的距離為:4、直線與圓錐曲線相交的弦長公式:消y:,務(wù)必注意若l與曲線交于A
2025-06-18 01:03
【總結(jié)】第4章 向量代數(shù)與空間解析幾何習(xí)題解答一、計算題與證明題1.已知,,,并且.計算.解:因為,,,并且所以與同向,且與反向因此,,所以2.已知,,求.解:(1)(2)得所以3.設(shè)力作用在點,求力對點的力矩的大?。猓阂驗?所以力矩所以,力矩的大小為
2025-08-05 10:17
【總結(jié)】徐州市沛縣第二中學(xué)高三數(shù)學(xué)一輪復(fù)習(xí)導(dǎo)學(xué)案編寫人:劉洪金審核:高三數(shù)學(xué)備課組---------------------------------------------------------------------------------------------------------------------------------------------------解
2025-03-25 07:47
【總結(jié)】1《線性代數(shù)與空間解析幾何》哈工大數(shù)學(xué)系代數(shù)與幾何教研室王寶玲線性方程組第五章2?齊次方程組?非齊次方程組?方程組在幾何中的應(yīng)用本章的主要內(nèi)容300)0(nnnnmmmnnaxaxaxaxaxaxaxax
2024-10-16 21:32
【總結(jié)】第七章:空間解析幾何向量代數(shù)本章知識點1、幾種常用的曲線。2、曲面極其方程示例。3、空間曲線(直線)極其方程示例。4、二次曲面示例。重點:向量運算、平面及其方程、空間直線及其方程難點:曲面及其方程一、向量概念1、向量的概念既有大小又有方向的量向量的模a零向量二、向量的線性運算
2025-08-27 15:52
【總結(jié)】.WORD格式整理..一、計算題與證明題1.已知,,,并且.計算.解:因為,,,并且所以與同向,且與反向因此,,所以2.已知,,求.解:(1)(2)得所以4.已知向量與共線,且滿足,求向量
2025-08-05 15:42