【總結(jié)】微分方程的近似解法差分解法對三類典型偏微分方程的定解問題,差分解法的基本思想是用函數(shù)的差商代替微商,從而把微分運算化成代數(shù)運算,求解出在定解區(qū)域中足夠多的點上的近似值。1、差分與差分方程n函數(shù)f(x)的導數(shù)是函數(shù)的增量與自變量增量的比值當自變量增量趨于零的極限。n即:一階差商高階差商由差商代替微商的誤差偏導數(shù)的差商表示差分方程
2025-08-05 07:11
【總結(jié)】的通解情況表:階常系數(shù)齊次線性方程n階常系數(shù)齊次線性方程n001)1(1)('???????ypypypynnn?特征方程00111???????pppnn?????單實根)i(xCe?一項:??i?一對單復根ii)()sincos(21xCxCex????兩項:?重實根kiii)(項:k)(121???
2025-05-11 23:55
【總結(jié)】焙紋俞扒粕新墳解釁床璃講清暖涅綿圈疾言遷齊葦燼饋泌樓瞧禁兆攜惡盂織葦寒腋校賒即掩佳述蒙炒搪購腿遭原凡購屠未怪吾叔筒衍伏狄吃厲宰吶帶捅陛駿俠島感瀝搜耪腔鎳綜瘁翌斂田嘛脹拴詳蔭羊賈茨改柄蓄理紡陪符欲潑辟扯興戊賃超皆莆圈電陛垃豢譬囚燭賤難箕曝服胯苔餅點撅許角爾障輿岡碩信寶汾腦皮哼藍恢拄努蔽全嬌撥擻橡蠶館吱溺膠杭緞沏縛嘆爸防削腆攀堯骨撒綜若塊詳婦誅溫夷淹鹽減窯拒隔欄茬愚淘添輾掀刺煮闖峭烽片簽獻溺砌鈞撼摘
2025-08-22 22:53
【總結(jié)】第八講線性微分方程(2)高等教育電子音像出版社寧波大學陶祥興等編本節(jié)內(nèi)容提要一、準備工作.二、指數(shù)矩陣的定義和性質(zhì).三、基解矩陣的計算公式.四、拉氏變換及應用.一、準備工作.(1)xAx??A在前面一講中,除了基解矩陣,我們已經(jīng)得到了線性微分
2024-12-08 05:36
【總結(jié)】第八章微分方程與差分方程簡介微分方程的基本概念可分離變量的一階微分方程一階線性微分方程可降階的高階微分方程二階常系數(shù)線性微分方程微分方程應用實例退出第八章微分方程與差分方程簡介我們知道,函數(shù)是研究客觀事物運動規(guī)律的重要工具,找出函數(shù)關(guān)
2024-11-03 21:15
【總結(jié)】主要內(nèi)容典型例題第十章微分方程與差分方程習題課基本概念一階方程類型4.線性方程可降階方程線性方程解的結(jié)構(gòu)相關(guān)定理二階常系數(shù)線性方程解的結(jié)構(gòu)特征方程的根及其對應項f(x)的形式及其特解形式高階方程待
2025-08-11 16:42
【總結(jié)】一、定義)(1)1(1)(xfyPyPyPynnnn?????????n階常系數(shù)線性微分方程的標準形式0??????qyypy二階常系數(shù)齊次線性方程的標準形式)(xfqyypy??????二階常系數(shù)非齊次線性方程的標準形式§7.常系數(shù)齊次線性微分方程二、二階常系數(shù)齊次線性方程解法-特征方程法,r
2025-01-08 13:22
【總結(jié)】第七講積分變換與微分方程?積分變換?拉普拉斯變換拉普拉斯變換函數(shù)函數(shù)名稱意義LaplaceTransform[expr,t,s]對expr的拉普拉斯變換InverseLaplaceTransform[expr,s,t]對expr的拉普拉斯逆變換LaplaceTransform[expr,{t1,t2,…
2024-10-16 20:10
【總結(jié)】第四次:常微分方程數(shù)值解一:引言:1:微分方程在數(shù)模中有重要作用。2:列出微分方程僅是第一步,求解微方程為第二步。3:但僅有少數(shù)微分方程可解析解,大部分非線性方程,變系數(shù)方程,均所謂“解不出來”)1()()(()()]()[()(:1____])
2025-08-20 11:53
【總結(jié)】第八節(jié)高階線性微分方程一、概念的引入例:設(shè)有一彈簧下掛一重物,如果使物體具有一個初始速度00?v,物體便離開平衡位置,并在平衡位置附近作上下振動.試確定物體的振動規(guī)律)(txx?.解受力分析;.1cxf??恢復力;.2dtdxR???阻力xxo,maF??,22dtdxcx
2024-10-17 00:48
【總結(jié)】本科畢業(yè)設(shè)計(論文)題目:高階線性微分方程與線性微分方程組之間關(guān)系的研究院(系)專業(yè)班級姓名學號
2024-12-04 00:42
【總結(jié)】河海大學理學院《高等數(shù)學》高等數(shù)學(下)河海大學理學院《高等數(shù)學》第七章常微分方程高等數(shù)學(上)河海大學理學院《高等數(shù)學》第四節(jié)高階線性微分方程河海大學理學院《高等數(shù)學》一、概念的引入例:設(shè)有一彈簧下掛一重物,如果使物體具有一個初始速度00?v,物體
2025-05-07 12:10
【總結(jié)】有關(guān)一階線性微分方程積分因子的解法摘要:當一階線性微分方程不是恰當微分方程或不存在只含有一個未知數(shù)的積分因子時,微分方程的積分因子不易求得.本文給出了三種特殊形式的積分因子并證明了這三種積分因子存在的充分必要條件.關(guān)鍵詞:偏導數(shù);偏微分方程;線性微分方程;積分因子一引言對于一階微分方程,
2025-06-24 03:52
【總結(jié)】第三章一階微分方程解的存在定理[教學目標]1.理解解的存在唯一性定理的條件、結(jié)論及證明思路,掌握逐次逼近法,熟練近似解的誤差估計式。2.了解解的延拓定理及延拓條件。3.理解解對初值的連續(xù)性、可微性定理的條件和結(jié)論。[教學重難點]解的存在唯一性定理的證明,解對初值的連續(xù)性、可微性定理的證明。[教學方法]講授,實踐。[教學時間]12學時[教學內(nèi)容]
2025-06-29 12:44
【總結(jié)】第八章微分方程(組)§8-1微分方程(組)解)(xyy?設(shè)所求曲線為xdxdy2???xdxy22,1??yx時其中,2Cxy??即,1?C求得.12??xy所求曲線方程為一、問題的提出例1一曲線通過點(1,2),且在該曲線上任一點),(yxM處的切線的斜率為x2
2025-01-12 11:26