【總結(jié)】目錄上頁下頁返回結(jié)束高階線性微分方程第六節(jié)二、線性齊次方程解的結(jié)構(gòu)三、線性非齊次方程解的結(jié)構(gòu)一、二階線性微分方程舉例第七章目錄上頁下頁返回結(jié)束一、二階線性微分方程舉例當(dāng)重力與彈性力抵消時,物體處于平衡狀態(tài),例1.質(zhì)量為
2025-05-09 02:16
【總結(jié)】第四節(jié)一階線性微分方程教學(xué)目的:使學(xué)生掌握一階線性微分方程的解法,了解伯努利方程的解法教學(xué)重點:一階線性微分方程教學(xué)過程:一、一階線性微分方程方程叫做一階線性微分方程.如果Q(x)o0,則方程稱為齊次線性方程,否則方程稱為非齊次線性方程.方程叫做對應(yīng)于非齊次線性方程的齊次線性方程.
2025-08-22 06:00
【總結(jié)】目錄上頁下頁返回結(jié)束第五章線性微分方程組前面幾章研究了只含一個未知函數(shù)的一階或高階方程,但在許多實際的問題和一些理論問題中,往往要涉及到若干個未知函數(shù)以及它們導(dǎo)數(shù)的方程所組成的方程組,即微分方程組,本章將介紹一階微分方程組的一般解法,重點仍在線性方程組的基本理論和常系數(shù)線性方程的解法上.
2025-01-20 04:56
【總結(jié)】第四節(jié)高階線性方程第十二章微分方程-1-第四節(jié)高階線性方程一二階齊次線性方程的通解結(jié)構(gòu)二二階非齊次線性方程的通解結(jié)構(gòu)三n階線性方程的通解結(jié)構(gòu)第四節(jié)高階線性方程第十二章微分方程-2-一二
2025-04-29 06:46
【總結(jié)】計算機控制技術(shù)課程講義1步驟:1、給定系統(tǒng)的輸入和必要初始條件。(輸出的響應(yīng)函數(shù)必然在某種輸入激勵條件下產(chǎn)生)2、對微分方程兩邊進行拉氏變換,變微分運算為代數(shù)運算。3、在S域中解出系統(tǒng)輸出的拉氏變換表達式,應(yīng)用拉氏反變換求得其時域解。用拉氏變換求解線性微分方程計算機控制技術(shù)課程講義2例:前例3力學(xué)系統(tǒng),系統(tǒng)輸出:
2025-05-12 12:11
【總結(jié)】機動目錄上頁下頁返回結(jié)束?第十節(jié)歐拉方程歐拉方程)(1)1(11)(xfypyxpyxpyxnnnnnn?????????)(為常數(shù)kp,tex?令常系數(shù)線性微分方程xtln?即第十二章歐拉方程的算子解法:)(1)1(11)(xfypyxpyxpyxnn
2025-08-05 06:25
【總結(jié)】第三章一階微分方程的解的存在定理需解決的問題?,)(),(1000的解是否存在初值問題???????yxyyxfdxdy?,,)(),(2000是否唯一的解是存在若初值問題???????yxyyxfdxdy§解的存在唯一性定理
2025-01-20 04:55
【總結(jié)】微分方程建模Ⅱ動態(tài)模型正規(guī)戰(zhàn)與游擊戰(zhàn)?早在第一次世界大戰(zhàn)期間就提出了幾個預(yù)測戰(zhàn)爭結(jié)局的數(shù)學(xué)模型,其中有描述傳統(tǒng)的正規(guī)戰(zhàn)爭的,也有考慮游擊戰(zhàn)爭的,以及雙方分別使用正規(guī)部隊和游擊部隊的所謂混合戰(zhàn)爭的。后來人們對這些模型作了改進用以分析歷史上一些著名的戰(zhàn)爭,如二戰(zhàn)中的硫磺島之戰(zhàn)和越南戰(zhàn)爭。預(yù)測戰(zhàn)爭勝負(fù)應(yīng)該考慮哪些因素?;
2025-08-16 00:58
【總結(jié)】二階常微分方程解的存在問題分析畢業(yè)論文目錄§1引言 5§2常系數(shù)線性微分方程的解法 5二階常系數(shù)齊次線性微分方程的解法——特征方程法 5二階常系數(shù)非齊次線性微分方程的解法 7Ⅰ: 7Ⅱ: 10§3二階微分方程的降階和冪級數(shù)解法 11可將階的一些方程類型 11二階線性微分方程的冪級數(shù)解法 14
2025-06-18 06:16
【總結(jié)】這一部分里,我們將看到以下內(nèi)容?幾個典型物理問題及其數(shù)學(xué)描述(微分方程和定解條件)?微分方程的類型?微分方程的邊界條件?微分方程及其邊界條件的等效積分原理幾個典型的問題?弦振動問題的微分方程及定解條件?傳熱問題的微分方程及定解條件?位勢方程及定解條件弦是一種抽象模型,工程實際中,可以模擬繩鎖、
2025-05-15 04:17
【總結(jié)】第二章控制系統(tǒng)的數(shù)學(xué)模型?掌握不同物理系統(tǒng)微分方程的建立?掌握拉氏變換及其性質(zhì)?熟悉基本環(huán)節(jié)的傳遞函數(shù)?能用拉氏變換、框圖化簡及梅森增益公示求系統(tǒng)的傳遞函數(shù)教學(xué)目的?建立系統(tǒng)的微分方程?拉氏變換的應(yīng)用及框圖化簡學(xué)習(xí)重點和難點本次課程作業(yè)2-172-13(c)把求傳遞函數(shù)改為求微分方程
2025-05-12 11:22
【總結(jié)】微分方程數(shù)值解課程設(shè)計姓名*****學(xué)號200******專業(yè)信息與計算科學(xué)課設(shè)題目:對初邊值問題2222xutu?????(0x1)0||10??
2025-01-12 04:03
2025-06-06 05:22
【總結(jié)】微分方程的經(jīng)濟應(yīng)用,如果要使該商品的銷售收入在價格變化的情況下保持不變,則銷售量對于價格的函數(shù)關(guān)系滿足什么樣的微分方程?在這種情況下,該商品的需求量相對價格的彈性是多少?解 由題意得銷售收入(常數(shù)),在上式兩端對求導(dǎo),得到所滿足的微分方程.即且,需求量(1)求商品對價格的需求函數(shù);(2)當(dāng)時,需求是否趨于穩(wěn)定.
2025-09-25 15:08
【總結(jié)】???
2025-06-21 23:02