【總結(jié)】大學(xué)本科畢業(yè)生實(shí)習(xí)報(bào)告 一、實(shí)習(xí)基本情況 實(shí)習(xí)時(shí)間xx年月xx日—xx年月xx日,共七周。 實(shí)習(xí)地點(diǎn)實(shí)習(xí)地點(diǎn)個(gè)。在自治區(qū)內(nèi)個(gè)實(shí)習(xí)點(diǎn),區(qū)外個(gè)實(shí)習(xí)點(diǎn)。具體實(shí)習(xí)地點(diǎn)詳見(jiàn)附件一,屆本科畢業(yè)生實(shí)習(xí)情況統(tǒng)計(jì)...
2024-12-04 00:38
【總結(jié)】一.填空1.Euler法的一般遞推公式為,整體誤差為,局部截?cái)嗾`差為:.,改進(jìn)Euler的一般遞推公式整體誤差為,局部截?cái)嗾`差為:。2.線性多步法絕對(duì)穩(wěn)定的充要條件是
2025-04-16 23:19
【總結(jié)】第6章解線性方程組的迭代法直接方法比較適用于中小型方程組。對(duì)高階方程組,即使系數(shù)矩陣是稀疏的,但在運(yùn)算中很難保持稀疏性,因而有存儲(chǔ)量大,程序復(fù)雜等不足。迭代法則能保持矩陣的稀疏性,具有計(jì)算簡(jiǎn)單,編制程序容易的優(yōu)點(diǎn),并在許多情況下收斂較快。故能有效地解一些高階方程組。1迭代法概述迭代法的基本思想是構(gòu)造一串收斂到解的序列,即建立一種從已有近似解計(jì)算新的近似解的規(guī)則。由不同的計(jì)
2025-08-23 01:55
【總結(jié)】湖南師范大學(xué)本科生畢業(yè)論文(設(shè)計(jì))撰寫規(guī)范撰寫畢業(yè)論文(設(shè)計(jì))是培養(yǎng)學(xué)生綜合運(yùn)用本學(xué)科的基本知識(shí)和基本技能,分析、解決實(shí)際問(wèn)題和某些理論問(wèn)題,培養(yǎng)學(xué)生科學(xué)研究、創(chuàng)新意識(shí)、創(chuàng)新能力,提高學(xué)生素質(zhì)的重要途徑,是高校教學(xué)的重要實(shí)踐環(huán)節(jié)。為了統(tǒng)一和規(guī)范我校本科生畢業(yè)論文(設(shè)計(jì))的寫作,保證我校本科生畢業(yè)論文(設(shè)計(jì))的質(zhì)量,根據(jù)《中華人民共和國(guó)國(guó)家標(biāo)準(zhǔn)科學(xué)技術(shù)報(bào)告、學(xué)位論文和
2025-08-26 12:24
【總結(jié)】.....學(xué)科代碼:學(xué)號(hào):貴州師范大學(xué)(本科)畢業(yè)論文題目:學(xué)院:專業(yè):年級(jí):姓名:
2025-08-03 06:52
【總結(jié)】附件2本科畢業(yè)論文論文題目:學(xué)生姓名:學(xué)號(hào):專業(yè):指導(dǎo)教師:
2025-06-22 13:38
【總結(jié)】數(shù)學(xué)與計(jì)算科學(xué)學(xué)院實(shí)驗(yàn)報(bào)告實(shí)驗(yàn)項(xiàng)目名稱Eular方法求解一階常微分方程數(shù)值解所屬課程名稱偏微分方程數(shù)值解實(shí)驗(yàn)類型驗(yàn)證性實(shí)驗(yàn)日期20
2025-07-24 00:27
【總結(jié)】偏微分方程數(shù)值解試題(06B)參考答案與評(píng)分標(biāo)準(zhǔn)信息與計(jì)算科學(xué)專業(yè)一(10分)、設(shè)矩陣對(duì)稱,定義,.若,則稱稱是的駐點(diǎn)(或穩(wěn)定點(diǎn)).矩陣對(duì)稱(不必正定),求證是的駐點(diǎn)的充要條件是:是方程組的解解:設(shè)是的駐點(diǎn),對(duì)于任意的,令,(3分),即對(duì)于任意的,,特別取,則有,得到.(3分)反之,若滿足,則對(duì)于任意的,,因此是的最小值點(diǎn).(4分)評(píng)分標(biāo)
2025-01-14 00:13
【總結(jié)】浙江師范大學(xué)數(shù)理與信息工程學(xué)院浙江師范大學(xué)數(shù)理與信息工程學(xué)院模擬試題1一、填空題:(每小題2分,共8分)1.方程()()0dypxyQxdx???的通解是①;2.(,)(,)0MxydxNxydy??是全微分方程(恰當(dāng)方程)的充要
2025-01-09 00:34
【總結(jié)】五邑大學(xué)本科畢業(yè)論文I摘要微分方程是表達(dá)自然規(guī)律的一種自然的數(shù)學(xué)語(yǔ)言。它從生產(chǎn)實(shí)踐與科學(xué)技術(shù)中產(chǎn)生,而又成為現(xiàn)代科學(xué)技術(shù)中分析問(wèn)題與解決問(wèn)題的一個(gè)強(qiáng)有力的工具。人們?cè)谔角笪镔|(zhì)世界某些規(guī)律的過(guò)程中,一般很難完全依靠實(shí)驗(yàn)觀測(cè)認(rèn)識(shí)到該規(guī)律,反而是依照某種規(guī)律存在的聯(lián)系常常容易被我們捕捉到,而這種規(guī)律用數(shù)學(xué)語(yǔ)言表達(dá)出來(lái),其結(jié)果往往形成一個(gè)微分方程,
2025-05-11 13:19
【總結(jié)】《微分方程數(shù)值解》實(shí)驗(yàn)教學(xué)大綱(2007年制訂)課程代碼:0231101804課程性質(zhì):非獨(dú)立設(shè)課 課程分類:專業(yè)課程實(shí)驗(yàn)學(xué)分: 實(shí)驗(yàn)學(xué)時(shí):18學(xué)時(shí)適用專業(yè):信息與計(jì)算科學(xué) 開(kāi)課單位:數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院一、實(shí)驗(yàn)教學(xué)目標(biāo)本實(shí)驗(yàn)教學(xué)目標(biāo)是通過(guò)編寫程序、分析數(shù)值結(jié)果、寫數(shù)值實(shí)
2025-09-25 17:00
【總結(jié)】第三章微分方程模型一、微分方程知識(shí)簡(jiǎn)介我們要掌握常微分方程的一些基礎(chǔ)知識(shí),對(duì)一些可以求解的微分方程及其方程組,要求掌握其解法,并了解一些方程的近似解法。微分方程的體系:(1)初等積分法(一階方程及幾類可降階為一階的方程)(2)一階線性微分方程組(常系數(shù)線性微分方程組的解法)(3)高階線性微分方程(高階線性常系數(shù)微分方程解法)。其中還包括了常微分方程的基本定理。
2025-06-24 22:55
【總結(jié)】第8章偏微分方程數(shù)值解一、典型的偏微分方程介紹1.橢圓型方程:在研究有熱源穩(wěn)定狀態(tài)下的熱傳導(dǎo),有固定外力作用下薄膜的平衡問(wèn)題時(shí),都會(huì)遇到Poisson方程Dyxyxfyuxu???????),(),(222202222??????yuxu
2025-08-05 11:00
【總結(jié)】數(shù)學(xué)實(shí)驗(yàn)報(bào)告1.題目:某容器盛滿水后,底端直徑為d0的小孔開(kāi)啟(如圖1),根據(jù)水力學(xué)知識(shí),當(dāng)水面高度為h時(shí),誰(shuí)從小孔中流出的速度為v=*(g*h)^(其中g(shù)為重力加速度,)1)若容器為倒圓錐形(如圖1),,小孔直徑d為3cm,為水從小孔中流完需要多少時(shí)間;2min時(shí)水面高度是多少。2)若容器為倒葫蘆形(如圖2),,小孔直徑d為3cm,由底端(記x=0)(
2025-01-16 17:00
【總結(jié)】§2-3運(yùn)動(dòng)微分方程的求解1)確定分析對(duì)象(隔離體)2)作受力分析(施力物、超距力、接觸力),畫隔離體圖3)建立合適坐標(biāo)系,寫出方程解析式并給出初始位置、速度4)給出二階常微分方程組的數(shù)字解5)闡明結(jié)果的物理含意與實(shí)質(zhì)作用力為時(shí)間、位置、速度的函數(shù);若力只是其中某一項(xiàng)的函數(shù),則問(wèn)題可加以簡(jiǎn)化。〖例2-1〗求質(zhì)點(diǎn)m在常力作用下的運(yùn)動(dòng)。已知t=0時(shí)初位
2025-09-25 16:37