【總結(jié)】一、線性組合二、向量組的等價(jià)三、線性相關(guān)性四、極大無(wú)關(guān)組§線性相關(guān)性設(shè)12,,,,nsP????12,,,skkkP??一、線性組合定義1122sskkk??????和稱為向量組的一個(gè)線性組合.12,,,s?
2024-12-07 18:39
【總結(jié)】§2標(biāo)準(zhǔn)正交基§3同構(gòu)§4正交變換§1定義與基本性質(zhì)§6對(duì)稱矩陣的標(biāo)準(zhǔn)形§8酉空間介紹§7向量到子空間的距離─最小二乘法小結(jié)與習(xí)題第九章歐氏空間§5子空間§定義與基本性質(zhì)
2024-10-16 06:44
【總結(jié)】§2λ-矩陣的標(biāo)準(zhǔn)形§3不變因子§1λ-矩陣§4矩陣相似的條件§6若當(dāng)(Jordan)標(biāo)準(zhǔn)形的理論推導(dǎo)§5矩陣相似的條件小結(jié)與習(xí)題第八章λ─矩陣§初等因子
2024-10-16 06:39
【總結(jié)】§2線性空間的定義與簡(jiǎn)單性質(zhì)§3維數(shù)·基與坐標(biāo)§4基變換與坐標(biāo)變換§1集合·映射§5線性子空間§7子空間的直和§8線性空間的同構(gòu)§6子空間的交與和小結(jié)與習(xí)題
2024-10-16 06:35
【總結(jié)】§2λ-矩陣的標(biāo)準(zhǔn)形§3不變因子§1λ-矩陣§4矩陣相似的條件§6若當(dāng)(Jordan)標(biāo)準(zhǔn)形的理論推導(dǎo)§5矩陣相似的條件小結(jié)與習(xí)題第八章λ─矩陣§若當(dāng)標(biāo)準(zhǔn)形的
【總結(jié)】§2λ-矩陣的標(biāo)準(zhǔn)形§3不變因子§1λ-矩陣§4矩陣相似的條件§6若當(dāng)(Jordan)標(biāo)準(zhǔn)形的理論推導(dǎo)§5矩陣相似的條件小結(jié)與習(xí)題第八章λ─矩陣§矩陣的相似
【總結(jié)】一、矩陣乘積的行列式二、非退化矩陣三、矩陣乘積的秩§矩陣乘積的行列式與秩引入行列式乘法規(guī)則11121111212122221222121212,nnnnnnnnnnaaabbbaaabbbDDaaabbb?
2024-10-16 06:36
【總結(jié)】§4n級(jí)行列式的性質(zhì)§8Laplace定理行列式乘法法則§3n級(jí)行列式§2排列§1引言§5行列式的計(jì)算§7Cramer法則§6行列式按行(列)展開第二章行列式一、行列式
2024-10-16 06:38
【總結(jié)】§2標(biāo)準(zhǔn)正交基§3同構(gòu)§4正交變換§1定義與基本性質(zhì)§6對(duì)稱矩陣的標(biāo)準(zhǔn)形§8酉空間介紹§7向量到子空間的距離─最小二乘法小結(jié)與習(xí)題第九章歐氏空間§5子空間§子空間
2024-10-16 06:33
【總結(jié)】高代復(fù)習(xí)大綱2022春題型?選擇題?填空題?小計(jì)算題?大計(jì)算題?證明題主要內(nèi)容一.二次型二.線性空間三.線性變換四.-矩陣五.歐幾里得空間?一.二次型?合同變換化標(biāo)準(zhǔn)形?正慣性指數(shù)、負(fù)慣性指數(shù)、符號(hào)差?實(shí)二次型、復(fù)二
2025-01-19 23:11
【總結(jié)】三、數(shù)量乘法一、加法二、乘法四、轉(zhuǎn)置§矩陣的運(yùn)算1.定義()()ijsnijijsnCcab?????設(shè)則矩陣(),(),ijsnijsnAaBb????稱為矩陣A與B的和,記作.即
2025-01-20 13:15
【總結(jié)】§4n級(jí)行列式的性質(zhì)§8Laplace定理行列式乘法法則§3n級(jí)行列式§2排列§1引言§5行列式的計(jì)算§7Cramer法則§6行列式按行(列)展開第二章行列式一、矩陣
【總結(jié)】一、分塊乘法的初等變換二、應(yīng)用舉例§分塊矩陣的初等變換及應(yīng)用舉例E分塊成,作1次“初等變換”可得00mnEE??????0,0nmEE??????,0mnEPE??????0,0nPE??????0.mnEP
【總結(jié)】§4最大公因式§5因式分解§6重因式§10多元多項(xiàng)式§11對(duì)稱多項(xiàng)式§3整除的概念§2一元多項(xiàng)式§1數(shù)域§7多項(xiàng)式函數(shù)§9有理系數(shù)多項(xiàng)式§8復(fù)、實(shí)