【總結(jié)】雙曲線及標(biāo)準方程一、回顧?、焦點坐標(biāo)是什么?定義圖象方程焦點關(guān)系yoxF1F2··xyoF1F2··x2a2+y2b2=1y2x2a
2025-08-01 17:58
【總結(jié)】一般地,在直角直角坐標(biāo)系中,如果某曲線C上的點與一個二元方程f(x,y)=0的實數(shù)解建立了如下的關(guān)系:(1)曲線上的點的坐標(biāo)都是這個方程的解;(2)以這個方程的解為坐標(biāo)的點都是曲線上的點.曲線C上的點的坐標(biāo)構(gòu)成集合為A二元方程f(x,y)=0的解集為BBA?AB?那么這個方程叫做曲線的方程;
2024-08-25 02:33
【總結(jié)】一、回顧1、橢圓的第一定義是什么?2、橢圓的標(biāo)準方程,焦點坐標(biāo)是什么?定義圖象方程焦點關(guān)系y·oxF1F2··xyoF1F2··x2a2+y2b2=1
2024-08-25 01:11
【總結(jié)】雙曲線的定義與標(biāo)準方程(2)線.的點的軌跡叫做雙曲|)FF|數(shù)2a(2a的差的絕對值等于常的距離F,平面內(nèi)與兩個定點F2121?雙曲線定義:一.aPFPF221??二.雙曲線的標(biāo)準方程:)0,(12222???babyax)0,(12222???bab
2025-07-22 14:06
【總結(jié)】第二講參數(shù)方程1、參數(shù)方程的概念(1)在取定的坐標(biāo)系中,如果曲線上任意一點的坐標(biāo)x、y都是某個變數(shù)t的函數(shù),即并且對于t的每一個允許值,由上述方程組所確定的點M(x,y)都在這條曲線上,那么上述方程組就叫做這條曲線的參數(shù)方程,聯(lián)系x、y之間關(guān)系的變數(shù)叫做參變數(shù),簡稱
2025-05-09 05:20
【總結(jié)】菅光賓數(shù)字媒體系?基本概念?Bezier曲線?Bezier曲面?B樣條曲線?B樣條曲面?工業(yè)產(chǎn)品的幾何形狀大致可分為兩類?一類由初等解析曲面,如平面、圓柱面、圓錐面、球面、圓環(huán)面等組成,可以用初等解析函數(shù)完全清楚地表達全部形狀。?另一類由自由曲面組成,如汽車車身等的曲線
2025-01-15 09:04
【總結(jié)】......曲線和方程(二)教學(xué)目標(biāo):(一)知識要求:根據(jù)已知條件求平面曲線方程的基本步驟.(二)能力訓(xùn)練要求:1.會由已知條件求一些簡單的平面曲線的方程.2.會判斷曲線和方程的關(guān)系.(三)德育滲透目的:
2025-04-17 02:42
【總結(jié)】曲線和方程(二)教學(xué)目標(biāo):(一)知識要求:根據(jù)已知條件求平面曲線方程的基本步驟.(二)能力訓(xùn)練要求:1.會由已知條件求一些簡單的平面曲線的方程.2.會判斷曲線和方程的關(guān)系.(三)德育滲透目的:培養(yǎng)學(xué)生的數(shù)學(xué)修養(yǎng),提高學(xué)生的分析問題、解決問題的能力.教學(xué)重點求曲線方程的“五步”思路.教學(xué)難點依據(jù)題目特點,建立恰當(dāng)?shù)淖鴺?biāo)系,考察曲線的點與方程的
2025-04-17 01:59
【總結(jié)】2022屆高考數(shù)學(xué)復(fù)習(xí)強化雙基系列課件77《圓錐曲線-軌跡方程》基本知識概要:一、求軌跡的一般方法:1.直接法:如果動點運動的條件就是一些幾何量的等量關(guān)系,這些條件簡單明確,易于表述成含x,y的等式,就得到軌跡方程,這種方法稱之為直接法。用直接法求動點軌跡一般有建系,設(shè)點,列式,化簡,證明五個步驟,最后的證明可以省
2025-07-24 10:09
【總結(jié)】下頁上頁首頁小結(jié)結(jié)束下頁上頁首頁小結(jié)結(jié)束1.橢圓的定義和等于常數(shù)2a(2a|F1F2|)的點的軌跡.平面內(nèi)與兩定點F1、F2的距離的2.引入問題:差等于常數(shù)
2024-11-12 16:45
【總結(jié)】求曲線方程(3)[例1]在△ABC中,已知頂點A(1,1),B(3,6)且△ABC的面積等于3,求頂點C的軌跡方程.解:設(shè)頂點C的坐標(biāo)為(x,y),作CH⊥AB于H,則動點C屬于集合P={C|}321??CHAB∵kAB=
2024-11-09 03:30
【總結(jié)】數(shù)學(xué)多媒體教學(xué)大連木蘭女子高中由曲線求方程的步驟?1、選系?2、取動點?3、列方程?4、化簡方程7-7、圓的標(biāo)準方程?圓簡介:我們的生活充滿五彩圓圓的軌跡圓的定義:一個動點到已知定點等于定長點的軌跡叫做圓。演示圓已知圓心C(
2025-05-15 21:35
【總結(jié)】2022/2/111第6章曲面與曲線的構(gòu)建2022/2/112第6章曲面與曲線的構(gòu)建?曲面造型是三維造型中表達任意復(fù)雜物體表面的重要手段和方法。?曲線的構(gòu)建是指通過曲面構(gòu)建曲線的方法。?三維線架模型構(gòu)建?曲面模型的構(gòu)建?曲面的編輯?曲線的構(gòu)建2022/2/11
2025-01-14 20:54
【總結(jié)】空間解析幾何主講楊滌塵第二章軌跡與方程主要內(nèi)容:1、平面曲線的方程2、曲面的方程3、母線平行于坐標(biāo)軸的柱面方程4、空間曲線的方程第一節(jié)平面曲線的方程一、曲線與方程:定義:當(dāng)平面上取定了標(biāo)架之后,如果一個方程與一條曲線有著關(guān)系:(1)滿足方程的(x,y)必是曲線上某一點的坐標(biāo);
2025-05-03 18:31
【總結(jié)】濱州學(xué)院數(shù)學(xué)與信息科學(xué)系第二章軌跡與方程《空間解析幾何》課題開發(fā)組濱州學(xué)院數(shù)學(xué)與信息科學(xué)系空間曲線與曲面的方程笛卡爾(1596-1650)空間解析幾何空間曲線與曲面的方程3在解析幾何中研究的空間曲面S一般都可以被描述為一個3元函數(shù)的零點集,即滿足以下方程的點的集合:
2025-01-17 09:25