【總結(jié)】-理學(xué)院工科數(shù)學(xué)教學(xué)中心-《微積分》A哈爾濱工程大學(xué)微積分-理學(xué)院工科數(shù)學(xué)教學(xué)中心--理學(xué)院工科數(shù)學(xué)教學(xué)中心-第九章重積分教學(xué)內(nèi)容和基本要求理解二重積分、三重積分的概念
2025-02-21 11:58
【總結(jié)】話說微積分制作人:項晶菁數(shù)學(xué)的核心領(lǐng)域是:?代數(shù)學(xué)——研究數(shù)的理論;?幾何學(xué)——研究形的理論;?分析學(xué)——溝通形與數(shù)且涉及極限運算的部分。?舊三高(高等分析、高等代數(shù)、高等幾何)?數(shù)學(xué)分析權(quán)威R?柯朗所指出的,“微積分乃是一種震撼人心靈的智力奮斗的結(jié)晶”。?現(xiàn)代微積分有時作為“數(shù)學(xué)
2025-01-20 00:10
【總結(jié)】第六章定積分應(yīng)用v定積分的元素法v定積分在幾何學(xué)上的應(yīng)用v定積分在物理學(xué)上的應(yīng)用定積分的幾何應(yīng)用平面圖形的面積體積平面曲線的弧長Oxy第三節(jié)定積分在物理學(xué)上的應(yīng)用定積分物理應(yīng)用之一變力沿直線作功問題從物理學(xué)知道,若物體在作直線運動過程中受常力作用從a移至b(力的方向與物體運動方向一致),力對物體所作的
2025-04-29 00:02
【總結(jié)】第五章定積分及其應(yīng)用一、本章要點二、例題選講一、本章要點1、定積分定義:分割、取近似、求和、取極限.2、定積分的幾何意義:表示曲邊梯形的面積.且只有有限個第一類間斷點3、函數(shù)可積條件:4、定積分的性質(zhì):(1)線性運算性質(zhì)(2)對積分區(qū)間的可加性(3)單調(diào)性(4)積分估值不等式(5)定積分
2025-04-29 00:49
【總結(jié)】第五章微積分模型例1:(不允許缺貨的存儲模型)設(shè)某廠生產(chǎn)若干種產(chǎn)品,在輪換生產(chǎn)不同的產(chǎn)品時因更換設(shè)備要付生產(chǎn)準備費(與產(chǎn)品數(shù)量無關(guān)),同一的產(chǎn)量大于需求時因占用倉庫要付存儲費。已知某一產(chǎn)品日需求量為100件,生產(chǎn)準備費5000元,存儲費每件每日1元,若生產(chǎn)能力遠大于需求,并且不允許出現(xiàn)缺貨,試安排該產(chǎn)品的生產(chǎn)計劃,即多少天生產(chǎn)一次(生產(chǎn)周期)
2025-04-29 01:24
【總結(jié)】第四章不定積分一、原函數(shù))()(xfxF??或dxxfxdF)()(?稱是的原函數(shù))(xF)(xf二、不定積分CxFdxxf???)()(三、基本性質(zhì)??)()(xfdxxf?????dxxfdxxfd)()(??CxFdxxF????)()(CxFxdF???
2024-11-03 21:17
【總結(jié)】微積分理論數(shù)列的極限函數(shù)的極限微積分線性代數(shù)馮國臣2021/12/12定義如果對于任意給定的正數(shù)?(不論它多么小),總存在正數(shù)N,使得對于Nn?時的一切nx,不等式???axn都成立,那末就稱常數(shù)a是數(shù)列nx的極限,或者稱數(shù)列nx收斂于a,記為
【總結(jié)】1第二節(jié)第二類曲線積分-向量值函數(shù)在定向曲線上的積分一、對坐標的曲線積分的概念二、對坐標的曲線積分的計算三、兩類曲線積分之間的聯(lián)系2oxyABL問題的提出1?nMiM1?iM2M1Mix?iy?實例:變力沿曲線所作的功,:BAL?jyxQiyxPyxF??
2025-05-03 03:03
【總結(jié)】第3章數(shù)值積分劉東毅天津大學(xué)理學(xué)院數(shù)學(xué)系第3章數(shù)值積分主要目的:討論數(shù)值積分的基本理論與方法?代數(shù)精度的概念?插值型數(shù)值積分?數(shù)值穩(wěn)定性?復(fù)化求積方法?變步長的求積方法?Guass求積公式主要內(nèi)容:?數(shù)值積分公式及其代數(shù)精度?插值型數(shù)值積分公式與N
2025-01-12 08:02
【總結(jié)】第五節(jié)機動目錄上頁下頁返回結(jié)束對坐標的曲面積分一、基本概念觀察以下曲面的側(cè)(假設(shè)曲面是光滑的)曲面分上側(cè)和下側(cè)曲面分內(nèi)側(cè)和外側(cè)曲面法向量的指向決定曲面的側(cè).決定了側(cè)的曲面稱為有向曲面.曲面的投影問題:面在xoyS?,在有向曲面Σ上取一小塊
2024-12-08 05:11
【總結(jié)】如果先讓烏龜爬行一段路后,再讓劉翔去追,那么劉翔是永遠也追不上烏龜?shù)摹?、談?wù)剟⑾枧c烏龜賽跑的問題理由:劉翔追上烏龜之前,必須先到達烏龜?shù)某霭l(fā)點,而這段時間內(nèi),烏龜又向前爬行了一段路,于是劉翔必須趕上這段路,于是烏龜又向前爬行了一路。。。,如此分析下去,劉翔離烏龜越來越近,但卻是永遠也追不上烏龜。破解悖論
2025-01-04 08:27
【總結(jié)】韓淑霞公共郵箱:,Key:135246私人郵箱:請每個小班的數(shù)學(xué)課代表將電話號碼給我電話:153271419031.分析基礎(chǔ):函數(shù),極限,連續(xù)2.微積分學(xué):一元微積分(上冊)(下冊)3.向量代數(shù)與空間解析幾何4.無窮級數(shù)
2025-05-03 23:22
【總結(jié)】微積分基本定理(79)31、變速直線運動問題變速直線運動中路程為21()dTTvtt?設(shè)某物體作直線運動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),且0)(?tv,求物體在這段時間內(nèi)所經(jīng)過的路程.另一方面這段路程可表示為)()(12TsTs?原函數(shù)存在
2024-12-08 00:51
【總結(jié)】§可積條件Riemann積分的定義積分與分割、介點集的取法無關(guān)幾何意義(非負函數(shù)):函數(shù)圖象下方圖形的面積。xi-1xiiniiTbaxfdxxfR??????10||||)(lim)()(?其中iiiiiixxxxx????????1
【總結(jié)】§1不定積分的概念引例第五章不定積分?(1)xoy平面上一曲線過點(0,1),并在點(x,y)的斜率為ex-1,求此曲線。(2)一質(zhì)點在時刻t以速度v(t)=2t-1運動,求質(zhì)點從初始時刻t=0到時刻t所經(jīng)過的距離f(t).這兩個問題和我們在第三章遇到的問題正好相反
2025-01-14 05:05