【導(dǎo)讀】y=kx+b,y隨著x的增大而減小,且kb<0,
【總結(jié)】第1章二次函數(shù)二次函數(shù)的圖象與性質(zhì)第2課時學(xué)習(xí)目標(biāo)y=ax2(a0)的圖象,理解拋物線的概念;(重點)y=ax2(a0)的二次函數(shù)的圖象和性質(zhì),并會應(yīng)用其解決問題.(重點)復(fù)習(xí)引入首先列表。然后描點;最后連線.你還記得如何畫的圖象嗎?212yx?
2024-12-28 01:26
【總結(jié)】二次函數(shù)y=ax2+k的圖象與性質(zhì)【溫故而知新】?回憶二次函數(shù)y=ax2(a≠0)的圖象及性質(zhì)在同一坐標(biāo)系內(nèi)畫出函數(shù)y=x2、y=x2+1與y=x2-1的圖象。解:x…-2-1012…y=x2…41014…y=x2+1…52125…y=x2-1…30-
2024-11-30 03:33
【總結(jié)】《二次函數(shù)的圖象》說課稿嘉魚縣渡普中學(xué)壽華鋒尊敬的各位評委、老師:大家好,我今天說課的內(nèi)容是人教版義務(wù)教育課程標(biāo)準(zhǔn)試驗教科書數(shù)學(xué)九年級下冊第26章第1節(jié)第4個內(nèi)容《二次函數(shù)的圖象》.下面我將從教學(xué)內(nèi)容和內(nèi)容解析,教學(xué)目標(biāo)與目標(biāo)解析,教學(xué)問題診斷分析,教學(xué)支持條件分析和教學(xué)過程分析等五個方面來分析說明.一、教學(xué)內(nèi)容和內(nèi)容解析本課的教學(xué)內(nèi)容是畫二次函數(shù)的圖象并確定其特征.
2025-04-16 13:36
【總結(jié)】=ax2+bx+c的圖象和性質(zhì)教學(xué)目標(biāo): 1.使學(xué)生掌握用描點法畫出函數(shù)y=ax2+bx+c的圖象?! ?.使學(xué)生掌握用圖象或通過配方確定拋物線的開口方向、對稱軸和頂點坐標(biāo)?! ?.讓學(xué)生經(jīng)歷探索二次函數(shù)y=ax2+bx+c的圖象的開口方向、對稱軸和頂點坐標(biāo)以及性質(zhì)的過程,理解二次函數(shù)y=ax2+bx+c的性質(zhì)?! ≈攸c難點: 重點:用描點法畫出二次函數(shù)y=ax
2025-06-07 15:20
2025-07-29 21:48
【總結(jié)】第二章二次函數(shù)第2節(jié)二次函數(shù)的圖象與性質(zhì)第2課時二次函數(shù)y=ax2的圖象與性質(zhì)1課堂講解?二次函數(shù)y=ax2的圖象?二次函數(shù)y=ax2的性質(zhì)2課時流程逐點導(dǎo)講練課堂小結(jié)作業(yè)提升回顧舊知1.拋物線y=x2與y=-x2的頂
2025-03-12 10:29
【總結(jié)】第1章二次函數(shù)二次函數(shù)的圖象與性質(zhì)第1課時學(xué)習(xí)目標(biāo)y=ax2(a0)的圖象;(重點)y=ax2(a0)的二次函數(shù)的圖象和性質(zhì),并會應(yīng)用其解決問題.(重點)1、一次函數(shù)y=kx+b(k≠0)xyob0b=0xyo
2024-12-28 00:14
【總結(jié)】第二章二次函數(shù)第2節(jié)二次函數(shù)的圖象與性質(zhì)第6課時二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)1課堂講解?二次函數(shù)y=ax2+bx+c與y=a(x-h)2+k之間的關(guān)系?二次函數(shù)y=ax2+bx+c的圖象和性質(zhì)?二次函數(shù)y=ax2+bx+c的圖象與a,b,c之間的關(guān)系
2025-03-12 21:02
【總結(jié)】二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)第1課時二次函數(shù)y=ax2+k的圖象與性質(zhì)(教案)y=ax2+k(a≠0)與y=ax2(a≠0)圖象之間的關(guān)系.y=ax2+k(a≠0)的開口方向、對稱軸和頂點坐標(biāo),理解其增減性.“從特殊到一般”的方法研究問題.【重點難點】=ax2+k(a≠0)類型函數(shù)的圖象特點及
2024-12-09 07:33
【總結(jié)】二次函數(shù)y=ax2+k的圖象及性質(zhì)。12??xy2xy?xy=x2-3-2-10123……9410149……105212510……12??xy12??xy830-1038……
2025-08-23 15:11
【總結(jié)】=ax2的圖象和性質(zhì)?教學(xué)目標(biāo):=ax2的圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗。=ax2的圖象,并能根據(jù)圖象認(rèn)識和理解二次函數(shù)y=ax2的性質(zhì),初步建立二次函數(shù)表達(dá)式與圖象之間的聯(lián)系。=ax2的圖象,探索二次函數(shù)的性質(zhì)(開口方向、對稱軸、頂點坐標(biāo))。教學(xué)重點:二次函數(shù)y=ax2的圖象的作法和性質(zhì)教學(xué)難點:建立二次函數(shù)表達(dá)式與圖象之間的
2025-08-14 11:20
【總結(jié)】二次函數(shù)y=ax2(a>0)的圖象與性質(zhì)湘教·九年級下冊新課導(dǎo)入用描點法畫函數(shù)圖象的一般步驟是什么?我們學(xué)過的一次函數(shù)的圖象是什么圖形?①列表;②描點;③連線一條直線那么,二次函數(shù)的圖象會是什么樣的圖形呢?這節(jié)課我們來學(xué)習(xí)最簡單的二次函數(shù)y=ax2的圖象.探究新知
2025-03-13 02:03
【總結(jié)】第一篇:《二次函數(shù)y=ax2+k、y=a(x-h)2的圖象和性質(zhì)》教學(xué)反思 《二次函數(shù)y=ax+k、y=a(x-h)的圖象和性質(zhì)》教學(xué)反思 龍?zhí)舵?zhèn)第一初級中學(xué)黃海東 在講授了二次函數(shù)y=ax2+...
2024-10-25 13:46
【總結(jié)】第二章二次函數(shù)第2節(jié)二次函數(shù)的圖象與性質(zhì)第3課時二次函數(shù)y=ax2+k圖象與性質(zhì)1課堂講解?二次函數(shù)y=ax2+k的圖象?二次函數(shù)y=ax2+k的性質(zhì)2課時流程逐點導(dǎo)講練課堂小結(jié)作業(yè)提升復(fù)習(xí)回顧:二次函數(shù)y=ax
【總結(jié)】105二次函數(shù)y=ax^2+bx+c(a≠0)的圖象與性質(zhì)(基礎(chǔ))一、選擇題 1.將二次函數(shù)化為的形式,結(jié)果為(?。 . B. C. D. 2.已知二次函數(shù)的圖象,如圖所示,則下列結(jié)論正確的是(?。 . B. C. D. 3.若二次函數(shù)配方后為,則b、k的值分別為(
2025-04-04 03:43