【總結(jié)】復(fù)習(xí)引入1、什么是隨機(jī)事件?什么是基本事件?在一定條件下可能發(fā)生也可能不發(fā)生的事件,叫做隨機(jī)事件。試驗(yàn)的每一個(gè)可能的結(jié)果稱為基本事件。2、什么是隨機(jī)試驗(yàn)?凡是對(duì)現(xiàn)象或?yàn)榇硕M(jìn)行的實(shí)驗(yàn),都稱之為試驗(yàn)。如果試驗(yàn)具有下述特點(diǎn):(1)試驗(yàn)可以在相同條件下重復(fù)進(jìn)行;(2)每次試驗(yàn)的所有可能結(jié)果都是明確可知的,并且不止一
2025-07-20 05:55
【總結(jié)】一、離散型隨機(jī)變量的分布律第二章三、內(nèi)容小結(jié)二、常見離散型隨機(jī)變量的概率分布第一節(jié)離散型隨機(jī)變量及其分布律(2)..,2,1,}{,}{,),,2,1(的分布律量稱此式為離散型隨機(jī)變?yōu)榈母怕始词录「鱾€(gè)可能值的概率所有可能取的值為設(shè)離散型隨機(jī)變量XkpxXPxX
2025-09-25 16:11
【總結(jié)】?某商場(chǎng)要根據(jù)天氣預(yù)報(bào)來決定今年國(guó)慶節(jié)是在商場(chǎng)內(nèi)還是商場(chǎng)外開展促銷活動(dòng),統(tǒng)計(jì)資料表明,每年國(guó)慶節(jié)商場(chǎng)內(nèi)的促銷活動(dòng)可獲得經(jīng)濟(jì)效益2萬(wàn)元,商場(chǎng)外的促銷活動(dòng)如果不遇到有雨天氣可獲得經(jīng)濟(jì)效益10萬(wàn)元,如果促銷遇到有雨天氣則帶來經(jīng)濟(jì)損失4萬(wàn)元。9月30日氣象臺(tái)預(yù)報(bào)國(guó)慶節(jié)當(dāng)?shù)赜杏甑母怕适?0%,商場(chǎng)應(yīng)該選擇哪種促銷方式?,其中某一次射擊中,可能
2025-08-16 01:21
【總結(jié)】2.3.2離散型隨機(jī)變量的方差教學(xué)目標(biāo):知識(shí)與技能:了解離散型隨機(jī)變量的方差、標(biāo)準(zhǔn)差的意義,會(huì)根據(jù)離散型隨機(jī)變量的分布列求出方差或標(biāo)準(zhǔn)差。過程與方法:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),則Dξ=np(1—p)”,并會(huì)應(yīng)用上述公式計(jì)算有關(guān)隨機(jī)變量的方差。情感、態(tài)度與價(jià)值觀:承前啟后,感悟數(shù)學(xué)與生活的和諧之美,體現(xiàn)數(shù)學(xué)的文化功能與人文價(jià)值。教
2025-04-16 08:34
【總結(jié)】一、復(fù)習(xí)引入1、離散型隨機(jī)變量ξ的期望Eξ=x1p1+x2p2+…xnpn+…2、滿足線性關(guān)系的離散型隨機(jī)變量的期望E(aξ+b)=aEξ+b3、服從二項(xiàng)分布的離散型隨機(jī)變量的期望Eξ=np即若ξ~B(n,p),則4、服從幾何分布的隨機(jī)變量的期望若p(ξ=k)=
2025-11-02 08:47
【總結(jié)】數(shù)學(xué)導(dǎo)學(xué)案課題:離散型隨機(jī)變量的分布列編號(hào):58時(shí)間:第2周命制人:高婷婷班級(jí):姓名: 裝訂線
2025-06-07 21:59
【總結(jié)】學(xué)案5離散型隨機(jī)變量及其分布列離散型隨機(jī)變量及其分布列布列的概念,認(rèn)識(shí)分布列刻畫隨機(jī)現(xiàn)象的重要性,會(huì)求某些取有限個(gè)值的離散型隨機(jī)變量的分布列.,并能進(jìn)行簡(jiǎn)單應(yīng)用.求簡(jiǎn)單隨機(jī)變量的分布列,以及由此分布列求隨機(jī)變量的期望與方差.這部分知識(shí)綜合性強(qiáng),涉及排列、組合、二項(xiàng)式定理和概率,仍會(huì)以解答題形式出現(xiàn),以
2025-06-12 18:50
【總結(jié)】10Www.chinaedu.com版權(quán)所有不得復(fù)制1離散型隨機(jī)變量的分布列習(xí)題1.?的概率分布如下:114131614????ξ1234P14k1316則E?
2025-11-15 17:14
【總結(jié)】第二節(jié)離散隨機(jī)變量及其分布律?????xxkkpxXPxF}{)(分布函數(shù)分布律}{kkxXPp??離散型隨機(jī)變量的分布函數(shù)離散型隨機(jī)變量分布律與分布函數(shù)的關(guān)系.)(}{)(?????????xxxxkkkkxXPpxXPxF二、常見離散型隨機(jī)變量的概率分布1、兩
2025-05-13 21:14
【總結(jié)】§定義若隨機(jī)變量X的可能取值是有限個(gè)或可列個(gè),則稱X為離散型隨機(jī)變量描述X的概率特性常用概率分布或分布律?,2,1,)(???kpxXPkkX??kxxx21P??kppp21或離散隨機(jī)變量及分布律即§
2025-01-20 13:51
【總結(jié)】例1:某保險(xiǎn)公司新開設(shè)了一項(xiàng)保險(xiǎn)業(yè)務(wù),若在一年內(nèi)事件E發(fā)生,該公司要賠償a元.設(shè)在一年內(nèi)E發(fā)生的概率為p,為使公司收益的期望值等于a的10%,公司應(yīng)要求顧客交多少保險(xiǎn)金?例2:將一枚硬幣拋擲20次,求正面次數(shù)與反面次數(shù)之差?的概率分布,并求出?的期望E?與方差D?.例3(07全國(guó)高考)某商場(chǎng)經(jīng)銷某商品,根據(jù)以往資料統(tǒng)計(jì),顧客
2025-10-07 20:03
【總結(jié)】?第二節(jié)離散型隨機(jī)變量的期望與方差考綱點(diǎn)擊值、方差的意義.布列求出期望值、方差.熱點(diǎn)提示題的形式考查期望、方差在實(shí)際生活中的應(yīng)用.的關(guān)鍵.1.期望(1)若離散型隨機(jī)變量ξ的概率分布列為ξx1x2?xn?Pp1p
2025-11-01 00:24
【總結(jié)】SCH南極數(shù)學(xué)同步教學(xué)設(shè)計(jì)人教A版選修2-3第二章《隨機(jī)變量及其分布》2.3.2離散型隨機(jī)變量的方差(教學(xué)設(shè)計(jì))教學(xué)目標(biāo):知識(shí)與技能:了解離散型隨機(jī)變量的方差、標(biāo)準(zhǔn)差的意義,會(huì)根據(jù)離散型隨機(jī)變量的分布列求出方差或標(biāo)準(zhǔn)差。過程與方法:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p)
2025-04-16 08:49
【總結(jié)】§2離散型隨機(jī)變量研究一個(gè)離散型隨機(jī)變量不僅要知道它可能取值而且要知道它取每一個(gè)可能值的概率.一.概率分布:設(shè)離散型隨機(jī)變量的可能取值是有限個(gè)或可數(shù)個(gè)值,設(shè)的可能取值: 為了完全描述隨機(jī)變量,只知道X的可能取值是很不夠的,還必須知道取各種值的概率,也就是說要知道下列一串概率的值: 記 ,將的可能取值及相應(yīng)的既率成下表
2025-08-23 11:53
【總結(jié)】第7講離散型隨機(jī)變量的均值與方差A(yù)級(jí)基礎(chǔ)演練(時(shí)間:30分鐘滿分:55分)一、選擇題(每小題5分,共20分)1.(2021·西安模擬)樣本中共有五個(gè)個(gè)體,其值分別為a,0,1,2,的平均值為1,則樣本方差為().A.65
2025-11-29 14:23