freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

初三數(shù)學一模試題分類匯編——二次函數(shù)綜合及詳細答案-資料下載頁

2025-03-31 22:07本頁面
  

【正文】 PMD=∠PDM=∠CDF∴CF=CD∵A(﹣1,0),M(4﹣t,﹣t2+5t),設直線AM解析式為y=ax+m∴ 解得: ,∴直線AM:∴F(0,t)∴CF=OC﹣OF=4﹣t∵tx+t=﹣x+4,解得:,∴,∵∠CGD=90176。,∠DCG=45176。∴,∴ 解得: 綜上所述,當△PDM是等腰三角形時,t=1或.【點睛】本題考查了二次函數(shù)的圖象與性質,解二元一次方程組和一元二次方程,等腰直角三角形的性質,相似三角形的判定和性質,涉及等腰三角形的分類討論,要充分利用等腰的性質作為列方程的依據(jù).13.如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側)兩點,與y軸的正半軸交于點C,頂點為D,已知A(﹣1,0).(1)求點B,C的坐標;(2)判斷△CDB的形狀并說明理由;(3)將△COB沿x軸向右平移t個單位長度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關系式,并寫出自變量t的取值范圍.【答案】(Ⅰ)B(3,0);C(0,3);(Ⅱ)為直角三角形;(Ⅲ).【解析】【分析】(1)首先用待定系數(shù)法求出拋物線的解析式,然后進一步確定點B,C的坐標.(2)分別求出△CDB三邊的長度,利用勾股定理的逆定理判定△CDB為直角三角形.(3)△COB沿x軸向右平移過程中,分兩個階段:①當0<t≤時,如答圖2所示,此時重疊部分為一個四邊形;②當<t<3時,如答圖3所示,此時重疊部分為一個三角形.【詳解】解:(Ⅰ)∵點在拋物線上,∴,得∴拋物線解析式為:,令,得,∴;令,得或,∴.(Ⅱ):由拋物線解析式,得頂點的坐標為.如答圖1所示,過點作軸于點M,則,.過點作于點,則,.在中,由勾股定理得:;在中,由勾股定理得:;在中,由勾股定理得:.∵,∴為直角三角形. (Ⅲ)設直線的解析式為,∵,∴,解得,∴,直線是直線向右平移個單位得到,∴直線的解析式為:;設直線的解析式為,∵,∴,解得:,∴.連續(xù)并延長,射線交交于,則.在向右平移的過程中:(1)當時,如答圖2所示:設與交于點,可得,.設與的交點為,則:.解得,∴..(2)當時,如答圖3所示:設分別與交于點、點.∵,∴,.直線解析式為,令,得,∴..綜上所述,與的函數(shù)關系式為:.14.如圖,頂點M在y軸上的拋物線與直線y=x+1相交于A、B兩點,且點A在x軸上,點B的橫坐標為2,連結AM、BM.(1)求拋物線的函數(shù)關系式;(2)判斷△ABM的形狀,并說明理由;(3)把拋物線與直線y=x的交點稱為拋物線的不動點.若將(1)中拋物線平移,使其頂點為(m,2m),當m滿足什么條件時,平移后的拋物線總有不動點.【答案】(1)拋物線解析式為y=x2﹣1;(2)△ABM為直角三角形.理由見解析;(3)當m≤時,平移后的拋物線總有不動點.【解析】試題分析:(1)分別寫出A、B的坐標,利用待定系數(shù)法求出拋物線的解析式即可;根據(jù)OA=OM=1,AC=BC=3,分別得到∠MAC=45176。,∠BAC=45176。,得到∠BAM=90176。,進而得到△ABM是直角三角形;(3)根據(jù)拋物線的平以后的頂點設其解析式為,∵拋物線的不動點是拋物線與直線的交點,∴,方程總有實數(shù)根,則≥0,得到m的取值范圍即可試題解析:解:(1)∵點A是直線與軸的交點,∴A點為(1,0)∵點B在直線上,且橫坐標為2,∴B點為(2,3)∵過點A、B的拋物線的頂點M在軸上,故設其解析式為:∴,解得:∴拋物線的解析式為.(2)△ABM是直角三角形,且∠BAM=90176。.理由如下:作BC⊥軸于點C,∵A(1,0)、B(2,3)∴AC=BC=3,∴∠BAC=45176。;點M是拋物線的頂點,∴M點為(0,1)∴OA=OM=1,∵∠AOM=90176?!唷螹AC=45176。;∴∠BAM=∠BAC+∠MAC=90176?!唷鰽BM是直角三角形.(3)將拋物線的頂點平移至點(,),則其解析式為.∵拋物線的不動點是拋物線與直線的交點,∴化簡得:∴==當時,方程總有實數(shù)根,即平移后的拋物線總有不動點∴.考點:二次函數(shù)的綜合應用(待定系數(shù)法;直角三角形的判定;一元二次方程根的判別式)15.如圖,△ABC的頂點坐標分別為A(﹣6,0),B(4,0),C(0,8),把△ABC沿直線BC翻折,點A的對應點為D,拋物線y=ax2﹣10ax+c經(jīng)過點C,頂點M在直線BC上.(1)證明四邊形ABCD是菱形,并求點D的坐標;(2)求拋物線的對稱軸和函數(shù)表達式;(3)在拋物線上是否存在點P,使得△PBD與△PCD的面積相等?若存在,直接寫出點P的坐標;若不存在,請說明理由.【答案】(1)詳見解析(2)(3)詳見解析【解析】【分析】(1)根據(jù)勾股定理,翻折的性質可得AB=BD=CD=AC,根據(jù)菱形的判定和性質可得點D的坐標.(2)根據(jù)對稱軸公式可得拋物線的對稱軸,設M的坐標為(5,n),直線BC的解析式為y=kx+b,根據(jù)待定系數(shù)法可求M的坐標,再根據(jù)待定系數(shù)法求出拋物線的函數(shù)表達式.(3)分點P在CD的上面下方和點P在CD的上方兩種情況,根據(jù)等底等高的三角形面積相等可求點P的坐標:設P,當點P在CD的上面下方,根據(jù)菱形的性質,知點P是AD與拋物線的交點,由A,D的坐標可由待定系數(shù)法求出AD的函數(shù)表達式:,二者聯(lián)立可得P1();當點P在CD的上面上方,易知點P是∠D的外角平分線與拋物線的交點,此時,∠D的外角平分線與直線AD垂直,由相似可知∠D的外角平分線PD的斜率等于-2,可設其為,將D(10,8)代入可得PD的函數(shù)表達式:,與拋物線聯(lián)立可得P2(﹣5,38).【詳解】(1)證明:∵A(﹣6,0),B(4,0),C(0,8),∴AB=6+4=10,.∴AB=AC.由翻折可得,AB=BD,AC=CD.∴AB=BD=CD=AC.∴四邊形ABCD是菱形.∴CD∥AB.∵C(0,8),∴點D的坐標是(10,8).(2)∵y=ax2﹣10ax+c,∴對稱軸為直線.設M的坐標為(5,n),直線BC的解析式為y=kx+b,∴,解得.∴直線BC的解析式為y=﹣2x+8.∵點M在直線y=﹣2x+8上,∴n=﹣25+8=﹣2.∴M(5,-2).又∵拋物線y=ax2﹣10ax+c經(jīng)過點C和M,∴,解得.∴拋物線的函數(shù)表達式為.(3)存在.點P的坐標為P1(),P2(﹣5,38)
點擊復制文檔內(nèi)容
物理相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1