freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

初三數學一模試題分類匯編——二次函數綜合及詳細答案(編輯修改稿)

2025-03-31 22:07 本頁面
 

【文章內容簡介】 21) 【點睛】本題屬于二次函數綜合題,考查了待定系數法,一次函數的應用,二次函數的性質等知識,解題的關鍵是學會構建二次函數解決最值問題,學會構建一次函數解決實際問題,屬于中考壓軸題..7.已知點A(﹣1,2)、B(3,6)在拋物線y=ax2+bx上(1)求拋物線的解析式;(2)如圖1,點F的坐標為(0,m)(m>2),直線AF交拋物線于另一點G,過點G作x軸的垂線,垂足為H.設拋物線與x軸的正半軸交于點E,連接FH、AE,求證:FH∥AE;(3)如圖2,直線AB分別交x軸、y軸于C、D兩點.點P從點C出發(fā),沿射線CD方向勻速運動,速度為每秒個單位長度;同時點Q從原點O出發(fā),沿x軸正方向勻速運動,速度為每秒1個單位長度.點M是直線PQ與拋物線的一個交點,當運動到t秒時,QM=2PM,直接寫出t的值.【答案】(1)拋物線的解析式為y=x2﹣x;(2)證明見解析;(3)當運動時間為或秒時,QM=2PM.【解析】【分析】(1)(1)A,B的坐標代入拋物線y=ax2+bx中確定解析式;(2)把A點坐標代入所設的AF的解析式,與拋物線的解析式構成方程組,解得G點坐標,再通過證明三角形相似,得到同位角相等,兩直線平行;(3)具體見詳解.【詳解】.解:(1)將點A(﹣1,2)、B(3,6)代入中, ,解得: ,∴拋物線的解析式為y=x2﹣x. (2)證明:設直線AF的解析式為y=kx+m,將點A(﹣1,2)代入y=kx+m中,即﹣k+m=2,∴k=m﹣2,∴直線AF的解析式為y=(m﹣2)x+m.聯立直線AF和拋物線解析式成方程組, ,解得: 或 ,∴點G的坐標為(m,m2﹣m).∵GH⊥x軸,∴點H的坐標為(m,0).∵拋物線的解析式為y=x2﹣x=x(x﹣1),∴點E的坐標為(1,0).過點A作AA′⊥x軸,垂足為點A′,如圖1所示.∵點A(﹣1,2),∴A′(﹣1,0),∴AE=2,AA′=2.∴ =1, = =1,∴= ,∵∠AA′E=∠FOH,∴△AA′E∽△FOH,∴∠AEA′=∠FHO,∴FH∥AE. (3)設直線AB的解析式為y=k0x+b0,將A(﹣1,2)、B(3,6)代入y=k0x+b0中,得 ,解得: ,∴直線AB的解析式為y=x+3,當運動時間為t秒時,點P的坐標為(t﹣3,t),點Q的坐標為(t,0).當點M在線段PQ上時,過點P作PP′⊥x軸于點P′,過點M作MM′⊥x軸于點M′,則△PQP′∽△MQM′,如圖2所示,∵QM=2PM,∴ =,∴QM′=QP39。=2,MM′=PP39。=t,∴點M的坐標為(t﹣2, t).又∵點M在拋物線y=x2﹣x上,∴ t=(t﹣2)2﹣(t﹣2),解得:t=;當點M在線段QP的延長線上時,同理可得出點M的坐標為(t﹣6,2t),∵點M在拋物線y=x2﹣x上,∴2t=(t﹣6)2﹣(t﹣6),解得:t=.綜上所述:當運動時間秒 或 時,QM=2PM. 【點睛】本題考查二次函數綜合運用,綜合能力是解題關鍵.8.已知拋物線上有兩點M(m+1,a)、N(m,b).(1)當a=-1,m=1時,求拋物線的解析式;(2)用含a、m的代數式表示b和c;(3)當a<0時,拋物線滿足,,求a的取值范圍.【答案】(1);(2)b=am,c=am;(3)【解析】【分析】(1)根據題意得到M(2,-1)、N(1,b),代入拋物線解析式即可求出b、c;(2)將點M(m+1,a)、N(m,b)代入拋物線,可得,化簡即可得出;(3)把,代入可得,把,代入可得,然后根據m的取值范圍可得a的取值范圍.【詳解】解:(1)∵a=-1,m=1,∴M(2,-1)、N(1,b)由題意,得,解,得 (2) ∵點M(m+1,a)、N(m,b)在拋物線上①-②得,∴ 把代入②,得 (3)把,代入得,把,代入得, ,當時,隨m的增大而增大 即【點睛】本題考查待定系數法求函數解析式以及二次函數的圖像和性質,由函數圖像上點的坐標特征求出,是解題關鍵.9.如圖甲,直線y=﹣x+3與x軸、y軸分別交于點B、點C,經過B、C兩點的拋物線y=x2+bx+c與x軸的另一個交點為A,頂點為P.(1)求該拋物線的解析式;(2)在該拋物線的對稱軸上是否存在點M,使以C,P,M為頂點的三角形為等腰三角形?若存在,請直接寫出所符合條件的點M的坐標;若不存在,請說明理由;(3)當0<x<3時,在拋物線上求一點E,使△CBE的面積有最大值(圖乙、丙供畫圖探究).【答案】(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E點坐標為(,)時,△CBE的面積最大.【解析】試題分析:(1)由直線解析式可求得B、C坐標,利用待定系數法可求得拋物線解析式;(2)由拋物線解析式可求得P點坐標及對稱軸,可設出M點坐標,表示出MC、MP和PC的長,分MC=MP、MC=PC和MP=PC三種情況,可分別得到關于M點坐標的方程,可求得M點的坐標;(3)過E作EF⊥x軸,交直線BC于點F,交x軸于點D,可設出E點坐標,表示出F點的坐標,表示出EF的長,進一步可表示出△CBE的面積,利用二次函數的性質可求得其取得最大值時E點的坐標.試題解析:(1)∵直線y=﹣x+3與x軸、y軸分別交于點B、點C,∴B(3,0),C(0,3),把B、C坐標代入拋物線解析式可得,解得,∴拋物線解析式為y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴拋物線對稱軸為x=2,P(2,﹣1),設M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM為等腰三角形,∴有MC=MP、MC=PC和MP=PC三種情況,①當MC=MP時,則有=|t+1|,解得t=,此時M(2,);②當MC=PC時,則有=2,解得t=﹣1(與P點重合,舍去)或t=7,此時M(2,7);③當MP=PC時,則有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此時M(2,﹣1+2)或(2,﹣1﹣2);綜上可知存在滿足條件的點M,其坐標為(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如圖,過E作EF⊥x軸,交BC于點F,交x軸于點D,設E(x,x2﹣4x+3),則F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF?OD+EF?BD=EF?OB=3(﹣x2+3x)=﹣(x﹣)
點擊復制文檔內容
物理相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1