freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

佛山初三數(shù)學(xué)-二次函數(shù)的專項-培優(yōu)練習(xí)題-資料下載頁

2025-03-31 22:05本頁面
  

【正文】 重合),則是否存在一點(diǎn)P,使△PBC的面積最大.若存在,請求出△PBC的最大面積;若不存在,試說明理由;(3)若M是拋物線上任意一點(diǎn),過點(diǎn)M作y軸的平行線,交直線BC于點(diǎn)N,當(dāng)MN=3時,求M點(diǎn)的坐標(biāo) .【答案】(1),點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)為(8,0);(2)存在點(diǎn)P,使△PBC的面積最大,最大面積是16,理由見解析;(3)點(diǎn)M的坐標(biāo)為(42,)、(2,6)、(6,4)或(4+2,).【解析】【分析】(1) 由拋物線的對稱軸為直線x=3,利用二次函數(shù)的性質(zhì)即可求出a值, 進(jìn)而可得出拋物線的解析式, 再利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征, 即可求出點(diǎn)A、B的坐標(biāo);(2) 利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)C的坐標(biāo), 由點(diǎn)B、C的坐標(biāo), 利用待定系數(shù)法即可求出直線BC的解析式, 假設(shè)存在, 設(shè)點(diǎn)P的坐標(biāo)為(x,),過點(diǎn)P作PD//y軸, 交直線BC于點(diǎn)D,則點(diǎn)D的坐標(biāo)為(x,),PD= x2+2x,利用三角形的面積公式即可得出三角形PBC的面積關(guān)于x的函數(shù)關(guān)系式, 再利用二次函數(shù)的性質(zhì)即可解決最值問題;(3) 設(shè)點(diǎn)M的坐標(biāo)為(m,),則點(diǎn)N的坐標(biāo)為(m,),進(jìn)而可得出MN,結(jié)合MN=3即可得出關(guān)于m的含絕對值符號的一元二次方程, 解之即可得出結(jié)論 .【詳解】(1)拋物線的對稱軸是直線,解得:,拋物線的解析式為.當(dāng)時,解得:,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為.(2) 當(dāng)時,點(diǎn)的坐標(biāo)為.設(shè)直線的解析式為.將、代入,解得:,直線的解析式為.假設(shè)存在, 設(shè)點(diǎn)的坐標(biāo)為,過點(diǎn)作軸, 交直線于點(diǎn),則點(diǎn)的坐標(biāo)為,如圖所示 .,.,當(dāng)時,的面積最大, 最大面積是 16 .,存在點(diǎn),使的面積最大, 最大面積是 16 .(3) 設(shè)點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為,.又,.當(dāng)時, 有,解得:,點(diǎn)的坐標(biāo)為或;當(dāng)或時, 有,解得:,點(diǎn)的坐標(biāo)為,或,.綜上所述:點(diǎn)的坐標(biāo)為,、或,.【點(diǎn)睛】本題考查了二次函數(shù)的性質(zhì)、 二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、 待定系數(shù)法求一次函數(shù)解析式以及三角形的面積, 解題的關(guān)鍵是: (1) 利用二次函數(shù)的性質(zhì)求出a的值; (2) 根據(jù)三角形的面積公式找出關(guān)于x的函數(shù)關(guān)系式; (3) 根據(jù)MN的長度, 找出關(guān)于m的含絕對值符號的一元二次方程 .14.如圖,矩形OABC的兩邊在坐標(biāo)軸上,點(diǎn)A的坐標(biāo)為(10,0),拋物線y=ax2+bx+4過點(diǎn)B,C兩點(diǎn),且與x軸的一個交點(diǎn)為D(﹣2,0),點(diǎn)P是線段CB上的動點(diǎn),設(shè)CP=t(0<t<10).(1)請直接寫出B、C兩點(diǎn)的坐標(biāo)及拋物線的解析式;(2)過點(diǎn)P作PE⊥BC,交拋物線于點(diǎn)E,連接BE,當(dāng)t為何值時,∠PBE=∠OCD?(3)點(diǎn)Q是x軸上的動點(diǎn),過點(diǎn)P作PM∥BQ,交CQ于點(diǎn)M,作PN∥CQ,交BQ于點(diǎn)N,當(dāng)四邊形PMQN為正方形時,請求出t的值.【答案】(1)B(10,4),C(0,4),;(2)3;(3)或 .【解析】試題分析:(1)由拋物線的解析式可求得C點(diǎn)坐標(biāo),由矩形的性質(zhì)可求得B點(diǎn)坐標(biāo),由B、D的坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(2)可設(shè)P(t,4),則可表示出E點(diǎn)坐標(biāo),從而可表示出PB、PE的長,由條件可證得△PBE∽△OCD,利用相似三角形的性質(zhì)可得到關(guān)于t的方程,可求得t的值;(3)當(dāng)四邊形PMQN為正方形時,則可證得△COQ∽△QAB,利用相似三角形的性質(zhì)可求得CQ的長,在Rt△BCQ中可求得BQ、CQ,則可用t分別表示出PM和PN,可得到關(guān)于t的方程,可求得t的值.試題解析:解:(1)在y=ax2+bx+4中,令x=0可得y=4,∴C(0,4),∵四邊形OABC為矩形,且A(10,0),∴B(10,4),把B、D坐標(biāo)代入拋物線解析式可得,解得,∴拋物線解析式為y=x2+x+4;(2)由題意可設(shè)P(t,4),則E(t,t2+t+4),∴PB=10﹣t,PE=t2+t+4﹣4=t2+t,∵∠BPE=∠COD=90176。,當(dāng)∠PBE=∠OCD時,則△PBE∽△OCD,∴,即BP?OD=CO?PE,∴2(10﹣t)=4(t2+t),解得t=3或t=10(不合題意,舍去),∴當(dāng)t=3時,∠PBE=∠OCD; 當(dāng)∠PBE=∠CDO時,則△PBE∽△ODC,∴,即BP?OC=DO?PE,∴4(10﹣t)=2(t2+t),解得t=12或t=10(均不合題意,舍去)綜上所述∴當(dāng)t=3時,∠PBE=∠OCD;(3)當(dāng)四邊形PMQN為正方形時,則∠PMC=∠PNB=∠CQB=90176。,PM=PN,∴∠CQO+∠AQB=90176。,∵∠CQO+∠OCQ=90176。,∴∠OCQ=∠AQB,∴Rt△COQ∽Rt△QAB,∴,即OQ?AQ=CO?AB,設(shè)OQ=m,則AQ=10﹣m,∴m(10﹣m)=44,解得m=2或m=8,①當(dāng)m=2時,CQ==,BQ==,∴sin∠BCQ==,sin∠CBQ==,∴PM=PC?sin∠PCQ=t,PN=PB?sin∠CBQ=(10﹣t),∴t =(10﹣t),解得t=,②當(dāng)m=8時,同理可求得t=,∴當(dāng)四邊形PMQN為正方形時,t的值為或.點(diǎn)睛:本題為二次函數(shù)的綜合應(yīng)用,涉及矩形的性質(zhì)、待定系數(shù)法、相似三角形的判定和性質(zhì)、勾股定理、解直角三角形、方程思想等知識.在(1)中注意利用矩形的性質(zhì)求得B點(diǎn)坐標(biāo)是解題的關(guān)鍵,在(2)中證得△PBE∽△OCD是解題的關(guān)鍵,在(3)中利用Rt△COQ∽Rt△QAB求得CQ的長是解題的關(guān)鍵.本題考查知識點(diǎn)較多,綜合性較強(qiáng),難度較大.15.如圖,拋物線交軸于點(diǎn),交軸于點(diǎn),已知經(jīng)過點(diǎn)的直線的表達(dá)式為.(1)求拋物線的函數(shù)表達(dá)式及其頂點(diǎn)的坐標(biāo);(2)如圖①,點(diǎn)是線段上的一個動點(diǎn),其中,作直線軸,交直線于,交拋物線于,作∥軸,交直線于點(diǎn),四邊形為矩形.設(shè)矩形的周長為,寫出與的函數(shù)關(guān)系式,并求為何值時周長最大;(3)如圖②,在拋物線的對稱軸上是否存在點(diǎn),使點(diǎn)構(gòu)成的三角形是以為腰的等腰三角形.若存在,直接寫出所有符合條件的點(diǎn)的坐標(biāo);若不存在,請說明理由.圖① 圖②【答案】(1)拋物線的表達(dá)式為y=x22x+3,頂點(diǎn)C坐標(biāo)為(1,4);(2)L=4m212m=4(m+)2+9;當(dāng)m=時,最大值L=9;(3)點(diǎn)Q的坐標(biāo)為(1,),(1,),(1,3+),(1,3).【解析】試題分析:(1)由直線經(jīng)過A、B兩點(diǎn)可求得這兩點(diǎn)的坐標(biāo),然后代入二次函數(shù)解析式即可求出b、c的值,從而得到解析式,進(jìn)而得到頂點(diǎn)的坐標(biāo);(2)由題意可表示出D、E的坐標(biāo),從而得到DE的長,由已知條件可得DE=EF,從而可表示出矩形DEFG的周長L,利用二次函數(shù)的性質(zhì)可求得最大值;(3)分別以點(diǎn)A、點(diǎn)B為圓心,以AB長為半徑畫圓,圓與對稱軸的交點(diǎn)即為所求的點(diǎn).試題解析:(1)直線y=x+3與x軸相交于A(3,0 ),與y軸相交于B(0,3)拋物線y=x2+bx+c經(jīng)過A(3,0 ),B(0,3),所以,,∴,所以拋物線的表達(dá)式為y=x22x+3,∵y=x22x+3=(x+1)2+4,所以,頂點(diǎn)坐標(biāo)為C(1,4). (2)因為D在直線y=x+3上,∴D(m,m+3).因為E在拋物線上,∴E(m,m22m+3).DE=m22m+3(m+3)=m23m.由題意可知,AO=BO,∴∠DAP=∠ADP=∠EDF=∠EFD=45176。,∴DE=EF.L=4DE=4m212m.L=4m212m=4(m+)2+9.∵a=40,∴二次函數(shù)有最大值當(dāng)m=時,最大值L=9.(3)點(diǎn)Q的坐標(biāo)為(1,),(1,),(1,3+),(1,3).考點(diǎn):待定系數(shù)法;正方形的判定;二次函數(shù)的性質(zhì)的應(yīng)用;等腰三角形.
點(diǎn)擊復(fù)制文檔內(nèi)容
小學(xué)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1