freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx九年級數(shù)學(xué)二次函數(shù)的專項(xiàng)培優(yōu)練習(xí)題(含答案)-資料下載頁

2025-03-30 22:22本頁面
  

【正文】 (圖乙、丙供畫圖探究).【答案】(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E點(diǎn)坐標(biāo)為(,)時(shí),△CBE的面積最大.【解析】試題分析:(1)由直線解析式可求得B、C坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(2)由拋物線解析式可求得P點(diǎn)坐標(biāo)及對稱軸,可設(shè)出M點(diǎn)坐標(biāo),表示出MC、MP和PC的長,分MC=MP、MC=PC和MP=PC三種情況,可分別得到關(guān)于M點(diǎn)坐標(biāo)的方程,可求得M點(diǎn)的坐標(biāo);(3)過E作EF⊥x軸,交直線BC于點(diǎn)F,交x軸于點(diǎn)D,可設(shè)出E點(diǎn)坐標(biāo),表示出F點(diǎn)的坐標(biāo),表示出EF的長,進(jìn)一步可表示出△CBE的面積,利用二次函數(shù)的性質(zhì)可求得其取得最大值時(shí)E點(diǎn)的坐標(biāo).試題解析:(1)∵直線y=﹣x+3與x軸、y軸分別交于點(diǎn)B、點(diǎn)C,∴B(3,0),C(0,3),把B、C坐標(biāo)代入拋物線解析式可得,解得,∴拋物線解析式為y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴拋物線對稱軸為x=2,P(2,﹣1),設(shè)M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM為等腰三角形,∴有MC=MP、MC=PC和MP=PC三種情況,①當(dāng)MC=MP時(shí),則有=|t+1|,解得t=,此時(shí)M(2,);②當(dāng)MC=PC時(shí),則有=2,解得t=﹣1(與P點(diǎn)重合,舍去)或t=7,此時(shí)M(2,7);③當(dāng)MP=PC時(shí),則有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此時(shí)M(2,﹣1+2)或(2,﹣1﹣2);綜上可知存在滿足條件的點(diǎn)M,其坐標(biāo)為(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如圖,過E作EF⊥x軸,交BC于點(diǎn)F,交x軸于點(diǎn)D,設(shè)E(x,x2﹣4x+3),則F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF?OD+EF?BD=EF?OB=3(﹣x2+3x)=﹣(x﹣)2+,∴當(dāng)x=時(shí),△CBE的面積最大,此時(shí)E點(diǎn)坐標(biāo)為(,),即當(dāng)E點(diǎn)坐標(biāo)為(,)時(shí),△CBE的面積最大.考點(diǎn):二次函數(shù)綜合題.14.如圖,直線y=﹣x+分別與x軸、y軸交于B、C兩點(diǎn),點(diǎn)A在x軸上,∠ACB=90176。,拋物線y=ax2+bx+經(jīng)過A,B兩點(diǎn).(1)求A、B兩點(diǎn)的坐標(biāo);(2)求拋物線的解析式;(3)點(diǎn)M是直線BC上方拋物線上的一點(diǎn),過點(diǎn)M作MH⊥BC于點(diǎn)H,作MD∥y軸交BC于點(diǎn)D,求△DMH周長的最大值.【答案】(1)(﹣1,0)(2)y=﹣x2+x+(3)【解析】試題分析:(1)由直線解析式可求得B、C坐標(biāo),在Rt△BOC中由三角函數(shù)定義可求得∠OCB=60176。,則在Rt△AOC中可得∠ACO=30176。,利用三角函數(shù)的定義可求得OA,則可求得A點(diǎn)坐標(biāo);(2)由A、B兩點(diǎn)坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(3)由平行線的性質(zhì)可知∠MDH=∠BCO=60176。,在Rt△DMH中利用三角函數(shù)的定義可得到DH、MH與DM的關(guān)系,可設(shè)出M點(diǎn)的坐標(biāo),則可表示出DM的長,從而可表示出△DMH的周長,利用二次函數(shù)的性質(zhì)可求得其最大值.試題解析: (1)∵直線y=﹣x+分別與x軸、y軸交于B、C兩點(diǎn),∴B(3,0),C(0,),∴OB=3,OC=,∴tan∠BCO==,∴∠BCO=60176。,∵∠ACB=90176。,∴∠ACO=30176。,∴=tan30176。=,即=,解得AO=1,∴A(﹣1,0);(2)∵拋物線y=ax2+bx+經(jīng)過A,B兩點(diǎn),∴,解得,∴拋物線解析式為y=﹣x2+x+;(3)∵M(jìn)D∥y軸,MH⊥BC,∴∠MDH=∠BCO=60176。,則∠DMH=30176。,∴DH=DM,MH=DM,∴△DMH的周長=DM+DH+MH=DM+DM+DM=DM,∴當(dāng)DM有最大值時(shí),其周長有最大值,∵點(diǎn)M是直線BC上方拋物線上的一點(diǎn),∴可設(shè)M(t,﹣t2+t+),則D(t,﹣t+),∴DM=﹣t2+t+),則D(t,﹣t+),∴DM=﹣t2+t+﹣(﹣t+)=﹣t2+t=﹣(t﹣)2+,∴當(dāng)t=時(shí),DM有最大值,最大值為,此時(shí)DM==,即△DMH周長的最大值為.考點(diǎn):二次函數(shù)的綜合應(yīng)用,待定系數(shù)法,三角函數(shù)的定義,4方程思想15.某大學(xué)生利用暑假40天社會實(shí)踐參與了一家網(wǎng)店經(jīng)營,了解到一種成本為20元/件的新型商品在第x天銷售的相關(guān)信息如下表所示.銷售量p(件)P=50—x銷售單價(jià)q(元/件)當(dāng)1≤x≤20時(shí),當(dāng)21≤x≤40時(shí),(1)請計(jì)算第幾天該商品的銷售單價(jià)為35元/件?(2)求該網(wǎng)店第x天獲得的利潤y關(guān)于x的函數(shù)關(guān)系式.(3)這40天中該網(wǎng)店第幾天獲得的利潤最大?最大利潤是多少?【答案】(1)第10天或第35天該商品的銷售單價(jià)為35元/件(2)(3)這40天中該網(wǎng)店第21天獲得的利潤最大?最大利潤是725元【解析】【分析】(1)分別將q=35代入銷售單價(jià)關(guān)于x的函數(shù)關(guān)系式,求出x即可.(2)應(yīng)用利潤=銷售收入-銷售成本列式即可.(3)應(yīng)用二次函數(shù)和反比例函數(shù)的性質(zhì),分別求出最大值比較即得所求.【詳解】解:(1)當(dāng)1≤x≤20時(shí),令,解得;;當(dāng)21≤x≤40時(shí),令,解得;.∴第10天或第35天該商品的銷售單價(jià)為35元/件.(2)當(dāng)1≤x≤20時(shí),;當(dāng)21≤x≤40時(shí),.∴y關(guān)于x的函數(shù)關(guān)系式為.(3)當(dāng)1≤x≤20時(shí),∵,∴當(dāng)x=15時(shí),y有最大值y1,且y1=.當(dāng)21≤x≤40時(shí),∵26250>0,∴隨著x的增大而減小,∴當(dāng)x=21時(shí),有最大值y2,且.∵y1<y2,∴這40天中該網(wǎng)店第21天獲得的利潤最大?最大利潤是725元.
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1