【總結(jié)】橢圓與雙曲線的對(duì)偶性質(zhì)100條橢圓1.2.標(biāo)準(zhǔn)方程:3.4.點(diǎn)P處的切線PT平分△PF1F2在點(diǎn)P處的外角.5.PT平分△PF1F2在點(diǎn)P處的外角,則焦點(diǎn)在直線PT上的射影H點(diǎn)的軌跡是以長(zhǎng)軸為直徑的圓,除去長(zhǎng)軸的兩個(gè)端點(diǎn).6.以焦點(diǎn)弦PQ為直徑的圓必與對(duì)應(yīng)準(zhǔn)線相離.7.以焦點(diǎn)半徑PF1為直徑的圓必與以長(zhǎng)軸為直徑的圓內(nèi)切.8.設(shè)A1、A2為橢圓的左、右
2025-08-04 17:12
【總結(jié)】高二數(shù)學(xué)備課組的絕對(duì)值平面內(nèi)與兩個(gè)定點(diǎn)F1,F(xiàn)2的距離的差等于常數(shù)的點(diǎn)的軌跡叫做雙曲線.(小于︱F1F2︱)定義:oF2F1M12222??byax12222??b
2024-11-18 12:09
【總結(jié)】橢圓【學(xué)習(xí)目標(biāo)】1.掌握橢圓的標(biāo)準(zhǔn)方程,會(huì)求橢圓的標(biāo)準(zhǔn)方程;2.掌握橢圓的簡(jiǎn)單幾何性質(zhì),能運(yùn)用橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)處理一些簡(jiǎn)單的實(shí)際問題;3.了解運(yùn)用曲線的方程研究曲線的幾何性質(zhì)的思想方法。B級(jí)要求【自學(xué)評(píng)價(jià)】橢圓定義:2.橢圓的標(biāo)準(zhǔn)方程:①焦點(diǎn)在x軸上的方程:,②焦點(diǎn)在y軸上的方程:3.橢圓的簡(jiǎn)單幾何性質(zhì):方程
2025-06-07 23:27
【總結(jié)】雙曲線的幾何性質(zhì)一、基礎(chǔ)過關(guān)1.雙曲線2x2-y2=8的實(shí)軸長(zhǎng)是()A.2B.22C.4D.422.雙曲線3x2-y2=3的漸近線方程是()A.y=±3xB.y=±13xC.y=±3xD
2024-12-03 04:57
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》選修1-1《雙曲線的簡(jiǎn)單幾何性質(zhì)》教學(xué)目標(biāo)?知識(shí)與技能目標(biāo)?了解平面解析幾何研究的主要問題:(1)根據(jù)條件,求出表示曲線的方程;(2)通過方程,研究曲線的性質(zhì).理解雙曲線的范圍、對(duì)稱性及對(duì)稱軸,對(duì)稱中心、離心率、頂點(diǎn)、漸近線的概念;掌握雙曲線的標(biāo)準(zhǔn)方程、會(huì)用雙曲線的定義解決實(shí)際
2024-11-30 12:26
【總結(jié)】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)雙曲線的簡(jiǎn)單性質(zhì)練習(xí)北師大版選修1-1一、選擇題1.雙曲線與橢圓x216+y264=1有相同的焦點(diǎn),它的一條漸近線為y=-x,則雙曲線方程為()A.x2-y2=96B.y2-x2=160C.x2-y2=80D.y2-x2=24[答
2024-11-28 19:11
【總結(jié)】雙曲線焦半徑應(yīng)用舉例雙曲線上任意一點(diǎn)到其焦點(diǎn)的距離稱為該點(diǎn)的焦半徑。已知點(diǎn)P(x,y)在雙曲線-=1(a>0,b>0)上,F(xiàn),F(xiàn)分別為雙曲線的左、右焦點(diǎn)。若點(diǎn)P在右半支上,則|PF|=x+a,|PF|=x-a;若點(diǎn)P在左半支上,則|PF|=-(x+a),|PF|=-(x-a).利用焦半徑公式解題,可使解題過程簡(jiǎn)單明了,下面列舉幾例,供參考。一、求雙曲線的標(biāo)準(zhǔn)
2025-01-17 05:20
【總結(jié)】雙曲線的標(biāo)準(zhǔn)方程一、回顧1、橢圓的定義是什么?2、橢圓的標(biāo)準(zhǔn)方程、焦點(diǎn)坐標(biāo)是什么?定義圖象方程焦點(diǎn)關(guān)系y·oxF1F2··yoF1F2··|MF1|+|MF2|=2a(2
2024-11-17 19:28
【總結(jié)】復(fù)習(xí)::到兩定點(diǎn)F1、F2的距離之和為常數(shù)(大于|F1F2|)的動(dòng)點(diǎn)的軌跡叫做橢圓。:a,b,c的關(guān)系是:a2=b2+c2|)|2(2||||2121FFaaPFPF???當(dāng)焦點(diǎn)在X軸上時(shí)當(dāng)焦點(diǎn)在Y軸上時(shí))0(12222????babyax)0(12222????
2024-11-17 23:32
【總結(jié)】江蘇省漣水縣第一中學(xué)高中數(shù)學(xué)雙曲線的幾何性質(zhì)(2)教學(xué)案蘇教版選修1-1教學(xué)目標(biāo):1.了解雙曲線簡(jiǎn)單幾何性質(zhì),如范圍、對(duì)稱性、頂點(diǎn)、漸近線和離心率等.2.能用雙曲線的簡(jiǎn)單幾何性質(zhì)解決一些簡(jiǎn)單問題.教學(xué)重點(diǎn):雙曲線的幾何性質(zhì)及初步運(yùn)用.教學(xué)難點(diǎn):雙曲線的漸近線.教學(xué)過程:一復(fù)習(xí)回顧1.雙曲線的標(biāo)準(zhǔn)方程和幾何性質(zhì)
2024-12-05 03:09
【總結(jié)】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)雙曲線的幾何性質(zhì)課后知能檢測(cè)蘇教版選修2-1一、填空題1.(20212江蘇高考)雙曲線x216-y29=1的兩條漸近線的方程為________.【解析】由雙曲線方程可知a=4,b=3,所以兩條漸近線方程為y=±34
2024-12-05 09:29
【總結(jié)】編號(hào): 時(shí)間:2021年x月x日 海納百川 頁(yè)碼:第7頁(yè)共7頁(yè) 高考數(shù)學(xué)橢圓與雙曲線的經(jīng)典性質(zhì)知識(shí)點(diǎn)講解_ 橢圓與雙曲線的對(duì)偶性質(zhì)-- 高三數(shù)學(xué) 橢圓 點(diǎn)P處的切線PT平分△PF1F...
2025-04-04 12:02
【總結(jié)】§雙曲線的簡(jiǎn)單性質(zhì)設(shè)計(jì)人:趙軍偉審定:數(shù)學(xué)備課組【學(xué)習(xí)目標(biāo)】:(1)根據(jù)條件,求出表示曲線的方程;(2)通過方程,研究曲線的性質(zhì).、對(duì)稱性及對(duì)稱軸,對(duì)稱中心、離心率、頂點(diǎn)、漸近線的概念;、會(huì)用雙曲線的定義解決實(shí)際問題;通過例題和探究了解雙曲線的第二定義,準(zhǔn)線及焦半徑的概念..【學(xué)習(xí)重點(diǎn)】
2024-11-18 18:59
【總結(jié)】江蘇省響水中學(xué)高中數(shù)學(xué)第2章《圓錐曲線與方程》橢圓與雙曲線的離心率專題練習(xí)導(dǎo)學(xué)案蘇教版選修1-11.過雙曲線M:2221yxb??的左頂點(diǎn)A作斜率為1的直線l,若l與雙曲線M的兩條漸近線分別相交于B、C,且|AB|=|BC|,則雙曲線M的離心率是()A.10B.5
2024-11-19 17:31
【總結(jié)】.F2F1yox.xF1F20y..橢圓、雙曲線的方程(各取一種情況)、性質(zhì)的對(duì)比.橢圓雙曲線幾何條件標(biāo)準(zhǔn)方程頂點(diǎn)坐標(biāo)對(duì)稱軸焦點(diǎn)坐標(biāo)離心率準(zhǔn)線方程漸近線方程與兩個(gè)定點(diǎn)的距離的和等于常數(shù).與兩個(gè)定點(diǎn)的距離的差的絕對(duì)值等于常數(shù).焦點(diǎn)
2024-11-10 22:30