【總結(jié)】數(shù)學(xué)多媒體教學(xué)大連木蘭女子高中由曲線求方程的步驟?1、選系?2、取動(dòng)點(diǎn)?3、列方程?4、化簡(jiǎn)方程7-7、圓的標(biāo)準(zhǔn)方程?圓簡(jiǎn)介:我們的生活充滿五彩圓圓的軌跡圓的定義:一個(gè)動(dòng)點(diǎn)到已知定點(diǎn)等于定長(zhǎng)點(diǎn)的軌跡叫做圓。演示圓已知圓心C(
2025-05-15 21:35
【總結(jié)】第一篇:高中數(shù)學(xué)研究性學(xué)習(xí)的思考_數(shù)學(xué)論文 一.研究性學(xué)習(xí) (一)研究性學(xué)習(xí)研究性學(xué)習(xí)是學(xué)生在教師指導(dǎo)下,從自然、社會(huì)和生活中選擇和確定專題進(jìn)行研究,以類似科學(xué)研究的方式主動(dòng)地獲取知識(shí)、應(yīng)用知識(shí)、...
2024-10-15 13:48
【總結(jié)】2.雙曲線的簡(jiǎn)單幾何性質(zhì)(共2課時(shí))一、教學(xué)目標(biāo)1.了解雙曲線的簡(jiǎn)單幾何性質(zhì),如范圍、對(duì)稱性、頂點(diǎn)、漸近線和離心率等。2.能用雙曲線的簡(jiǎn)單幾何性質(zhì)解決一些簡(jiǎn)單問(wèn)題。二、教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):雙曲線的幾何性質(zhì)及初步運(yùn)用。難點(diǎn):雙曲線的漸近線。三、教學(xué)過(guò)程(一)復(fù)習(xí)提問(wèn)引入新課1.橢圓有哪些幾何性質(zhì),是
2024-12-08 08:44
【總結(jié)】●教學(xué)目標(biāo)、實(shí)虛半軸、焦點(diǎn)、離心率、漸近線方程.●教學(xué)重點(diǎn)雙曲線的幾何性質(zhì)●教學(xué)難點(diǎn)雙曲線的漸近線●教學(xué)方法學(xué)導(dǎo)式●教具準(zhǔn)備幻燈片、三角板●教學(xué)過(guò)程:師:上一節(jié),我們學(xué)習(xí)了雙曲
2024-12-08 01:51
【總結(jié)】第一課時(shí)?學(xué)習(xí)目標(biāo)?情境設(shè)置?探索研究?反思應(yīng)用?歸納總結(jié)?作業(yè)學(xué)習(xí)目標(biāo)?、標(biāo)準(zhǔn)方程及其求法;?、焦距、焦點(diǎn)位置與方程關(guān)系;?.情境設(shè)置?橢圓的定義?把平面內(nèi)與兩個(gè)定點(diǎn)F1、F2的距離和等于常數(shù)(大于|F1F2|)的點(diǎn)軌跡叫做橢圓。這兩
2024-11-19 16:17
【總結(jié)】圓錐曲線方程●知識(shí)網(wǎng)絡(luò)●范題精講【例1】已知橢圓的兩焦點(diǎn)為F1(0,-1)、F2(0,1),直線y=4是橢圓的一條準(zhǔn)線.(1)求橢圓方程;(2)設(shè)點(diǎn)P在橢圓上,且|PF1|-|PF2|=1,求tan∠F1PF2的值.解析:本題考查橢圓的基本性質(zhì)及解題的綜合能力.(1)設(shè)橢圓方程為+=1(ab0).由題設(shè)知c=1,=4,∴a2=4,b2=a
2025-08-05 18:16
【總結(jié)】學(xué)大教育陳華偉數(shù)學(xué)圓錐曲線總結(jié)1、圓錐曲線的兩個(gè)定義:(1)第一定義中要重視“括號(hào)”內(nèi)的限制條件:橢圓中,與兩個(gè)定點(diǎn)F,F(xiàn)的距離的和等于常數(shù),且此常數(shù)一定要大于,當(dāng)常數(shù)等于時(shí),軌跡是線段FF,當(dāng)常數(shù)小于時(shí),無(wú)軌跡;雙曲線中,與兩定點(diǎn)F,F(xiàn)的距離的差的絕對(duì)值等于常數(shù),且此常數(shù)一定要小于|FF|,定義中的“絕對(duì)值”與<|FF|不可忽視。若=|FF|,則軌跡是以F,F(xiàn)為端點(diǎn)的兩條射
2025-03-23 12:46
【總結(jié)】雙曲線的標(biāo)準(zhǔn)方程課題第1課時(shí)計(jì)劃上課日期:教學(xué)目標(biāo)知識(shí)與技能1.了解雙曲線的標(biāo)準(zhǔn)方程的推導(dǎo)過(guò)程,能根據(jù)已知條件求雙曲線的標(biāo)準(zhǔn)方程.2.掌握雙曲線兩種標(biāo)準(zhǔn)方程的形式過(guò)程與方法情感態(tài)度與價(jià)值觀教學(xué)重難點(diǎn)根據(jù)已知條件求雙曲線的標(biāo)準(zhǔn)方程.橢圓和雙曲線
2024-12-05 09:30
【總結(jié)】江蘇省漣水縣第一中學(xué)高中數(shù)學(xué)雙曲線的幾何性質(zhì)(1)教學(xué)案蘇教版選修1-1教學(xué)目標(biāo):1.了解雙曲線簡(jiǎn)單幾何性質(zhì),如范圍、對(duì)稱性、頂點(diǎn)、漸近線和離心率等.2.能用雙曲線的簡(jiǎn)單幾何性質(zhì)解決一些簡(jiǎn)單問(wèn)題.教學(xué)重點(diǎn):雙曲線的幾何性質(zhì)及初步運(yùn)用.教學(xué)難點(diǎn):雙曲線的漸近線.教學(xué)過(guò)程:一、復(fù)習(xí)提問(wèn)引入新課1.橢圓有哪些幾何性
2024-11-20 00:31
【總結(jié)】江蘇省建陵高級(jí)中學(xué)2021-2021學(xué)年高中數(shù)學(xué)雙曲線標(biāo)準(zhǔn)方導(dǎo)學(xué)案(無(wú)答案)蘇教版選修1-1【學(xué)習(xí)目標(biāo)】理解雙曲線的定義及標(biāo)準(zhǔn)方程【課前預(yù)習(xí)】1.回顧橢圓的定義,標(biāo)準(zhǔn)方程2.平面內(nèi)到兩定點(diǎn)的距離的差為常數(shù)的點(diǎn)的軌跡是什么?3.拉鏈演示4.雙曲線的定義:平面內(nèi)與兩個(gè)定點(diǎn)1F,2F的距
2024-12-06 00:25
【總結(jié)】江蘇省漣水縣第一中學(xué)高中數(shù)學(xué)雙曲線的標(biāo)準(zhǔn)方程(2)教學(xué)案蘇教版選修1-1教學(xué)目標(biāo):使學(xué)生進(jìn)一步了解雙曲線的定義,熟記雙曲線的標(biāo)準(zhǔn)方程教學(xué)重點(diǎn):根據(jù)已知條件求雙曲線的標(biāo)準(zhǔn)方程.橢圓和雙曲線標(biāo)準(zhǔn)形式中a,b,c間的關(guān)系.教學(xué)難點(diǎn):用雙曲線的標(biāo)準(zhǔn)方程處理簡(jiǎn)單的實(shí)際問(wèn)題.教學(xué)過(guò)程:一、復(fù)習(xí)提問(wèn)1.雙曲線的標(biāo)準(zhǔn)方程:
【總結(jié)】課件解應(yīng)用題中的幾個(gè)角的概念1、仰角、俯角的概念:在測(cè)量時(shí),視線與水平線所成的角中,視線在水平線上方的角叫仰角,在水平線下方的角叫做俯角。如圖:2、方向角:指北或指南方向線與目標(biāo)方向線所成的小于90°的水平角,叫方向角,如圖測(cè)量問(wèn)題:1、水平距離的測(cè)量①兩點(diǎn)間不能到
2024-11-17 11:59
【總結(jié)】數(shù)學(xué)的思維能力及其培養(yǎng)一、數(shù)學(xué)思維與數(shù)學(xué)思維能力的含義數(shù)學(xué)思維是對(duì)數(shù)學(xué)對(duì)象(空間形式、數(shù)量關(guān)系、結(jié)構(gòu)關(guān)系等)的本質(zhì)屬性和內(nèi)部規(guī)律的間接反映,并按照一般思維規(guī)律認(rèn)識(shí)數(shù)學(xué)內(nèi)容的理性活動(dòng)。數(shù)學(xué)思維能力主要包括四個(gè)方面的內(nèi)容: 1.會(huì)觀察、實(shí)驗(yàn)、比較、猜想、分析、綜合、抽象和概括; 2.會(huì)用歸納、演繹和類比進(jìn)行推理; 3.會(huì)合乎邏輯地、準(zhǔn)確地闡述自己的思想和觀點(diǎn);
2025-06-10 01:57
【總結(jié)】《雙曲線的簡(jiǎn)單幾何性質(zhì)》教學(xué)目標(biāo)?知識(shí)與技能目標(biāo)?了解平面解析幾何研究的主要問(wèn)題:(1)根據(jù)條件,求出表示曲線的方程;(2)通過(guò)方程,研究曲線的性質(zhì).理解雙曲線的范圍、對(duì)稱性及對(duì)稱軸,對(duì)稱中心、離心率、頂點(diǎn)、漸近線的概念;掌握雙曲線的標(biāo)準(zhǔn)方程、會(huì)用雙曲線的定義解決實(shí)際問(wèn)題;通過(guò)例題和探究了解雙曲線的第二定義,準(zhǔn)線及焦半徑的概念,利用信
2024-11-18 12:15
【總結(jié)】1、已知方程0表示一個(gè)圓.(1)求t的取值范圍;(2)求該圓半徑的取值范圍.2、若兩條直線的交點(diǎn)P在圓的內(nèi)部,求實(shí)數(shù)的取值范圍.3、已知圓M過(guò)兩點(diǎn)C(1,-1),D(-1,1),且圓心M在上.(1)求圓M的方程;(2)設(shè)P是直線上的動(dòng)點(diǎn),PA、PB是圓M的兩條切線,A、B為切點(diǎn),求四邊形PAMB面積的最小值.4、已知一圓的方程為,設(shè)該圓過(guò)點(diǎn)的最長(zhǎng)
2025-06-18 13:53