freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

論文——初中數(shù)學(xué)概念教學(xué)實(shí)例探究(編輯修改稿)

2024-11-16 23:19 本頁(yè)面
 

【文章內(nèi)容簡(jiǎn)介】 。這樣鏈鎖式概念教學(xué),既掌握了新概念又加深了對(duì)就概念的理解。在課堂教學(xué)中優(yōu)先考慮概念題的安排,精講精練,講練結(jié)合,合理安排,選題時(shí)注意題目的典型性、多樣性、綜合性和針對(duì)性,做到相關(guān)概念結(jié)合練,易混淆概念對(duì)比練,主要概念反復(fù)練。,課外作業(yè)中出現(xiàn)的錯(cuò)誤,要抓緊不放,及時(shí)糾正。概念教學(xué)的重點(diǎn)不是記熟概念,而是理解和應(yīng)用概念解決實(shí)際問(wèn)題。因此,教師要引導(dǎo)每一位學(xué)生清楚的認(rèn)識(shí)到所犯錯(cuò)誤是哪一個(gè)概念用錯(cuò)了,或者是將哪一個(gè)概念的關(guān)鍵詞忽略了,今后遇到類似的問(wèn)題怎么辦。即使是其它方面的錯(cuò)誤也要找出是否概念不清而致錯(cuò),予以分析糾正。,要進(jìn)行概念總結(jié)??偨Y(jié)后,要特別注意把同類概念區(qū)別分析清楚,把不同類概念的聯(lián)系分析透徹。概念的形成是一個(gè)由特殊到一般的過(guò)程,而概念的運(yùn)用則是一個(gè)由一般到特殊的過(guò)程,它們是學(xué)生掌握概念的兩個(gè)階段。,是教學(xué)過(guò)程中的高級(jí)階段,在應(yīng)用中求得對(duì)概念更深層次的理解,以達(dá)到鞏固的目的,同時(shí)也使學(xué)生認(rèn)識(shí)到數(shù)學(xué)概念既是進(jìn)一步學(xué)習(xí)數(shù)學(xué)理論的基礎(chǔ),又是進(jìn)行再認(rèn)識(shí)的工具。當(dāng)然應(yīng)用概念應(yīng)由易到難,循序漸進(jìn),有一定的梯度,以符合學(xué)生的認(rèn)知規(guī)律,便于將所掌握的知識(shí)轉(zhuǎn)化為能力。總之,在數(shù)學(xué)概念教學(xué)過(guò)程中,教師只要從教材和學(xué)生的實(shí)際出發(fā),面向全體學(xué)生,耐心地幫助學(xué)生掌握邏輯思維的“語(yǔ)言”,逐步提高他們的思維水平,就一定能夠增強(qiáng)數(shù)學(xué)概念教學(xué)的有效性,從而提高數(shù)學(xué)教學(xué)質(zhì)量。2013年12月第三篇:初中數(shù)學(xué)概念教學(xué)論文:試論初中數(shù)學(xué)概念教學(xué)初中數(shù)學(xué)概念教學(xué)論文:試論初中數(shù)學(xué)概念教學(xué) 概念是客觀事物本質(zhì)屬性在人們頭腦中的反映。數(shù)學(xué)概念反映現(xiàn)實(shí)世界的空間形式和數(shù)量關(guān)系的本質(zhì)屬性的思維形式。在中學(xué)數(shù)學(xué)教學(xué)中,正確理解數(shù)學(xué)概念是掌握數(shù)學(xué)基礎(chǔ)知識(shí)的前提,是學(xué)好定理、公式、法則和數(shù)學(xué)思想的基礎(chǔ),搞清概念是提高解題能力的關(guān)鍵。只要對(duì)概念理解的深透,才能在解題中做出正確的判斷。因此,在數(shù)學(xué)教學(xué)過(guò)程中,數(shù)學(xué)概念的教學(xué)顯得尤為重要。學(xué)生數(shù)學(xué)能力的發(fā)展取決于他對(duì)數(shù)學(xué)概念的牢固掌握與深刻理解與否。而在現(xiàn)實(shí)中,許多學(xué)生對(duì)數(shù)學(xué)的學(xué)習(xí),只注重盲目的做習(xí)題,不注重對(duì)數(shù)學(xué)概念的掌握,對(duì)基本概念含糊不清。做習(xí)題不懂得從基本概念入手,思考解題依據(jù),探索解題方法,而是跟著感覺(jué)走。這樣的學(xué)習(xí),必然越學(xué)越糊涂,因而數(shù)學(xué)概念的教學(xué)在整個(gè)數(shù)學(xué)教學(xué)中有其不容忽視的地位與作用。下面僅結(jié)合本人平時(shí)的教學(xué)實(shí)踐,談一點(diǎn)膚淺的認(rèn)識(shí)與體會(huì)。一、概念的引入:、熟知的具體事例中進(jìn)行引入。如“圓”的概念的引出前,可讓同學(xué)們聯(lián)想生活中見(jiàn)過(guò)的年輪、太陽(yáng)、五環(huán)旗、圓狀跑道等實(shí)物的形狀,再讓同學(xué)用圓規(guī)在紙上畫(huà)圓,也可用準(zhǔn)備好的定長(zhǎng)的線繩,將一端固定,而另一端帶有鉛筆并繞固定端旋轉(zhuǎn)一周,從而引導(dǎo)同學(xué)們自己發(fā)現(xiàn)圓的形成過(guò)程,進(jìn)而總結(jié)出圓的特點(diǎn):圓周上任意一點(diǎn)到圓心的距離相等,從而猜想歸納出“圓”的概念。概念復(fù)習(xí)的起步是在已有的認(rèn)知結(jié)構(gòu)的基礎(chǔ)上進(jìn)行的。因此,在教學(xué)新概念前,如果能對(duì)學(xué)生認(rèn)知結(jié)構(gòu)中原有的適當(dāng)概念作一些類比引入新概念,則有利于促進(jìn)新概念的形成。例如:在教學(xué)一元二次方程時(shí),就可以先復(fù)習(xí)一元一次方程,因?yàn)橐辉淮畏匠淌腔A(chǔ),一元二次方程是延伸,復(fù)習(xí)一元一次方程是合乎知識(shí)邏輯的。通過(guò)比較得出兩種方程都是只含有一個(gè)未知數(shù)的整式方程,差異僅在于未知數(shù)的最高次數(shù)不同。由此,很容易建立起“一元二次方程”的概念。二、分析概念含義,抓住概念本質(zhì)。,突出關(guān)鍵詞。數(shù)學(xué)概念嚴(yán)謹(jǐn)、準(zhǔn)確、簡(jiǎn)練。教師的語(yǔ)言對(duì)于學(xué)生感知教材,形成概念有重要的意義,因此要特別注意用詞的嚴(yán)格性和準(zhǔn)確性。教師要用生動(dòng)、形象的語(yǔ)言講清概念的每一個(gè)字、句、符號(hào)的意義,特別是關(guān)鍵的字、詞、句,這是指導(dǎo)學(xué)生掌握概念,并認(rèn)識(shí)概念的前提。如:“分解因式”概念:“把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變形叫把這個(gè)多項(xiàng)式分解因式?!痹诮虒W(xué)中學(xué)生往往只注重“積”這個(gè)關(guān)鍵詞,而忽略了“整式”,易造成對(duì)分解因式的錯(cuò)誤認(rèn)識(shí)。所以在教學(xué)中務(wù)必強(qiáng)調(diào),并與學(xué)生分析這兩處關(guān)鍵詞的含義,加深對(duì)概念的理解。,抓住本質(zhì)。數(shù)學(xué)概念大多數(shù)是通過(guò)描述定義給出他的確切含義,他屬于理性認(rèn)識(shí),但來(lái)源于感性認(rèn)識(shí),所以對(duì)于這類概念一定要抓住它的本質(zhì)屬性。如:“互為補(bǔ)角”的概念:“如果兩個(gè)角的和是平角,則這兩個(gè)角互為補(bǔ)角?!逼浔举|(zhì)屬性:(1)必須具備兩個(gè)角之和為180176。,一個(gè)角為180176。或三個(gè)角為180176。都不是互為補(bǔ)角,互補(bǔ)角只就兩個(gè)角而言。(2)互補(bǔ)的兩個(gè)角只是數(shù)量上的關(guān)系,這與兩個(gè)角的位置無(wú)關(guān)。通過(guò)這兩個(gè)本質(zhì)屬性的分析,學(xué)生對(duì)“互為補(bǔ)角”有了全面的理解。,深化概念。數(shù)學(xué)概念都是從正面闡述,一些學(xué)生只從文字上理解,以為掌握了概念的本質(zhì),而碰到具體的數(shù)學(xué)問(wèn)題卻又難以做出正確的判斷。因此,在教學(xué)過(guò)程中,必須在學(xué)生正面認(rèn)識(shí)概念的基礎(chǔ)上,通過(guò)反例或變式從反面去剖析數(shù)學(xué)概念,凸顯對(duì)象中隱蔽的本質(zhì)要素,加深學(xué)生對(duì)概念理解的全面性。如:在學(xué)習(xí)對(duì)頂角的概念后,讓學(xué)生做題:(1)下列表示的兩個(gè)角,哪組是對(duì)頂角?(a)兩條直線相交,相對(duì)的兩個(gè)角(b)頂點(diǎn)相同的兩個(gè)角(c)同一個(gè)角的兩個(gè)鄰補(bǔ)角 前后聯(lián)系,多方印證,加深認(rèn)識(shí)。部分學(xué)生對(duì)概念的全面理解不可能一蹴而就,而是要經(jīng)歷:實(shí)踐——認(rèn)識(shí)——再實(shí)踐——再認(rèn)識(shí)的過(guò)程,這是個(gè)“正確”與“錯(cuò)誤”搖擺不定的過(guò)程,更是一個(gè)對(duì)概念的理解不斷深化的過(guò)程。事實(shí)上,學(xué)生在初步學(xué)習(xí)某一數(shù)學(xué)概念之后,對(duì)概念的理解并不怎么深刻,而是通過(guò)對(duì)后續(xù)知識(shí)的學(xué)習(xí)讓學(xué)生回過(guò)頭來(lái)再對(duì)概念進(jìn)行加深理解,遵循“循環(huán)反復(fù),螺旋上升”的學(xué)習(xí)原則。如:學(xué)生剛接觸“二次函數(shù)”的概念時(shí),僅能從形式上判斷某一函數(shù)是否為二次函數(shù)。但當(dāng)他們學(xué)習(xí)了其圖象,研究了圖象的性質(zhì)后就能根據(jù)a得出圖象的開(kāi)口方向,由a、b確定圖象的對(duì)稱軸,由a、b、c給出圖象的頂點(diǎn)坐標(biāo)。這時(shí)對(duì)二次函數(shù)的概念自是記憶深刻,能脫口而出了。三、概念的記憶。,舉一反三。、如:一元一次方程的概念:“只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)為一(次),這樣的方程叫做一元一次方程”,清楚了“元”與“次”的含義,則一元一次方程、二元一次方程、一元一次不等式等概念就水到渠成了。通過(guò)縱橫對(duì)比,在類比中找特點(diǎn),在聯(lián)想中求共性,把數(shù)學(xué)知識(shí)系統(tǒng)化,學(xué)生輕輕松松記概念。,聯(lián)系區(qū)別。任何一個(gè)概念都有它的內(nèi)涵和外延,外延的大小與內(nèi)涵成反比關(guān)系。內(nèi)涵越多,外延就越??;內(nèi)涵越少,外延就越大。把握概念的內(nèi)涵與外延,能大大增加學(xué)生對(duì)概念的明晰度,提高鑒別能力,避免張冠李戴,為此,把所教概念同類似的相關(guān)的概念相比較,分清它們的異同點(diǎn)及聯(lián)系,也就顯得十分重要。如:學(xué)完“軸對(duì)稱”與“軸對(duì)稱圖形”的概念后,可引導(dǎo)學(xué)生找出兩者之間的聯(lián)系和區(qū)別。聯(lián)系:兩者都有對(duì)稱軸,如把成軸對(duì)稱的兩個(gè)圖形看成一個(gè)整
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1