freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx八年級(jí)數(shù)學(xué)分解因式教學(xué)設(shè)計(jì)(編輯修改稿)

2024-11-16 00:27 本頁面
 

【文章內(nèi)容簡(jiǎn)介】 概念。板書課題: 因式分解1.因式分解概念:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式叫做因式分解,也叫分解因式。三、獨(dú)立練習(xí),鞏固新知練習(xí)1.下列由左邊到右邊的變形,哪些是因式分解?哪些不是?為什么?①(x+2)(x2)=x24②x24=(x+2)(x2)③a22ab+b2=(ab)2④3a(a+2)=3a2+6a⑤3a2+6a=3a(a+2)2.因式分解與整式乘法的關(guān)系:因式分解結(jié)合:a2b2=========(a+b)(ab)整式乘法說明:從左到右是因式分解其特點(diǎn)是:由和差形式(多項(xiàng)式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點(diǎn)是:由整式積的形式轉(zhuǎn)化成和差形式(多項(xiàng)式)。(2)∵xy( )=2x2y6xy2∴2x2y6xy2=xy( )(3)∵2x( )=2x2y6xy2∴2x2y6xy2=2x( )四、強(qiáng)化訓(xùn)練,掌握新知:練習(xí)3:把下列各式分解因式:(1)2ax+2ay (2)3mx6nx (3) x2y+xy2(4) x2+x (5) (讓學(xué)生上來板演)五、整理知識(shí),形成結(jié)構(gòu)(即課堂小結(jié))1.因式分解的概念 因式分解是整式中的一種恒等變形2.因式分解與整式乘法是兩種相反的恒等變形,也是思維方向相反的兩種思維方式,因此,因式分解的思維過程實(shí)際也是整式乘法的逆向思維的過程。3.利用2中關(guān)系,可以從整式乘法探求因式分解的結(jié)果。4.教學(xué)中滲透對(duì)立統(tǒng)一,以不變應(yīng)萬變的辯證唯物主義的思想方法。六、布置作業(yè)1.作業(yè)本(一)中167。評(píng)價(jià)與反饋1.通過由學(xué)生自己得出因式分解概念及其與整式乘法的關(guān)系的結(jié)論,了解學(xué)生觀察、分析問題的能力和逆向思維能力及創(chuàng)新能力。發(fā)現(xiàn)問題,及時(shí)反饋。2.通過例題及練習(xí),了解學(xué)生對(duì)概念的理解程度和實(shí)際運(yùn)用能力,最大限度地讓學(xué)生暴露問題和認(rèn)知誤差,及時(shí)發(fā)現(xiàn)和彌補(bǔ)教與學(xué)中的遺漏和不足,從而及時(shí)調(diào)控教與學(xué)。七.課堂小結(jié),了解學(xué)生對(duì)概念的熟悉程度和歸納概括能力、語言表達(dá)能力、知識(shí)運(yùn)用能力,教師恰當(dāng)?shù)亟o予引導(dǎo)和啟迪。分解因式教學(xué)設(shè)計(jì)6因式分解是進(jìn)行代數(shù)恒等變形的重要手段之一,它在以后的代數(shù)學(xué)習(xí)中有著重要的應(yīng)用,如:多項(xiàng)式除法的簡(jiǎn)便運(yùn)算,分式的運(yùn)算,解方程(組)以及二次函數(shù)的恒等變形等,因此學(xué)好因式分解對(duì)于代數(shù)知識(shí)的后繼學(xué)習(xí)具有相當(dāng)重要的意義。本節(jié)是因式分解的第1小節(jié),占一個(gè)課時(shí),它主要讓學(xué)生經(jīng)歷從分解因數(shù)到分解因式的過程,讓學(xué)生體會(huì)數(shù)學(xué)思想——類比思想,讓學(xué)生了解分解因式與整式的乘法運(yùn)算之間的互逆關(guān)系,感受分解因式在解決相關(guān)問題中的作用。一、學(xué)生知識(shí)狀況分析學(xué)生的技能基礎(chǔ):學(xué)生已經(jīng)熟悉乘法的分配律及其逆運(yùn)算,并且學(xué)習(xí)了整式的乘法運(yùn)算,因此,對(duì)于因式分解的引入,學(xué)生不會(huì)感到陌生,它為今天學(xué)習(xí)分解因式打下了良好基礎(chǔ)。學(xué)生活動(dòng)經(jīng)驗(yàn)基礎(chǔ):由整式乘法尋求因式分解的方法是一種逆向思維過程,而逆向思維對(duì)于八年級(jí)學(xué)生還比較生疏,接受起來還有一定的困難,再者本節(jié)還沒有涉及因式分解的具體方法,所以對(duì)于學(xué)生來說,尋求因式分解的方法是一個(gè)難點(diǎn)。二、教學(xué)任務(wù)分析基于學(xué)生在小學(xué)已經(jīng)接觸過因數(shù)分解的經(jīng)驗(yàn),但對(duì)于因式分解的概念還完全陌生,因此,本課時(shí)在讓學(xué)生重點(diǎn)理解因式分解概念的基礎(chǔ)上,應(yīng)有意識(shí)地培養(yǎng)學(xué)生知識(shí)遷移的數(shù)學(xué)能力,如:類比思想,逆向運(yùn)算能力等。因此,本課時(shí)的教學(xué)目標(biāo)是:知識(shí)與技能:(1)使學(xué)生了解因式分解的意義,理解因式分解的概念。(2)認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運(yùn)用這種關(guān)系尋求因式分解的方法。數(shù)學(xué)能力:(1)由學(xué)生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關(guān)系,培養(yǎng)學(xué)生的觀察能力,進(jìn)一步發(fā)展學(xué)生的類比思想。(2)由整式乘法的逆運(yùn)算過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。(3)通過對(duì)分解因式與整式的乘法的觀察與比較,培養(yǎng)學(xué)生的分析問題能力與綜合應(yīng)用能力。情感與態(tài)度:讓學(xué)生初步感受對(duì)立統(tǒng)一的辨證觀點(diǎn)以及實(shí)事求是的科學(xué)態(tài)度。三、教學(xué)過程分析本節(jié)課設(shè)計(jì)了六個(gè)教學(xué)環(huán)節(jié):看誰算得快——看誰想得快——看誰算得準(zhǔn)——學(xué)生討論——學(xué)生反思。第一環(huán)節(jié)看誰算得快活動(dòng)內(nèi)容:用簡(jiǎn)便方法計(jì)算:(1)=(2)—132+25+7=(3)992–1=活動(dòng)目的:如果說學(xué)生對(duì)因式分解還相當(dāng)陌生的話,相信學(xué)生對(duì)用簡(jiǎn)便方法進(jìn)行計(jì)算應(yīng)該相當(dāng)熟悉。引入這一步的目的旨在讓學(xué)生通過回顧用簡(jiǎn)便方法計(jì)算——因數(shù)分解這一特殊算法,使學(xué)生通過類比很自然地過渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環(huán)節(jié)設(shè)計(jì)的計(jì)算992–1的值是為了降低下一環(huán)節(jié)的難度,為下一環(huán)節(jié)的理解搭一個(gè)臺(tái)階。注意事項(xiàng):學(xué)生對(duì)于(1)(2)兩小題逆向利用乘法的分配律進(jìn)行運(yùn)算的方法是很熟悉,對(duì)于第(3)小題的逆向利用平方差公式的運(yùn)算則有一定的困難,因此,有必要引導(dǎo)學(xué)生復(fù)習(xí)七年級(jí)所學(xué)過的整式的乘法運(yùn)算中的平方差公式,幫助他們順利地逆向運(yùn)用平方差公式。第二環(huán)節(jié)看誰想得快活動(dòng)內(nèi)容:993–99能被哪些數(shù)整除?你是怎么得出來的?學(xué)生思考:從以上問題的解決中,你知道解決這些問題的關(guān)鍵是什么?活動(dòng)目的:引導(dǎo)學(xué)生把這個(gè)式子分解成幾個(gè)數(shù)的積的形式,繼續(xù)強(qiáng)化學(xué)生對(duì)因數(shù)分解的理解,為學(xué)生類比因式分解提供必要的精神準(zhǔn)備。注意事項(xiàng):由于有了第一環(huán)節(jié)的鋪墊,學(xué)生對(duì)于本環(huán)節(jié)問題的理解則顯得比較輕松,學(xué)生能回答出993–99能被100、998整除,有的同學(xué)還回答出能被350、200等整除,此時(shí),教師應(yīng)有意識(shí)地引導(dǎo),使學(xué)生逐漸明白解決這些問題的關(guān)鍵是——把一個(gè)多項(xiàng)式化為積的形式。第三環(huán)節(jié)看誰算得準(zhǔn)活動(dòng)內(nèi)容:計(jì)算下列式子:(1)3x(x—1)=;(2)m(a+b+c)=;(3)(m+4)(m—4)=;(4)(y—3)2=;(5)a(a+1)(a—1)=根據(jù)上面的算式填空:(1)ma+mb+mc=;(2)3x2—3x=;(3)m2—16=;(4)a3—a=;(5)y2—6y+9=活動(dòng)目的:在第一組的整式乘法的計(jì)算上,學(xué)生通過對(duì)第一組式子的觀察得出第二組式子的結(jié)果,然后通過對(duì)這兩組式子的結(jié)果的比較,使學(xué)生對(duì)因式分解有一個(gè)初步的意識(shí),由整式乘法的逆運(yùn)算逐步過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。注意事項(xiàng):由于整式的乘法運(yùn)算是學(xué)生在七年級(jí)已經(jīng)學(xué)習(xí)過的內(nèi)容,因此,學(xué)生能很快得出第一組式子的結(jié)果,并能很快發(fā)現(xiàn)第一組式子與第二組式子之間的聯(lián)系,從而得出第二組式子的結(jié)果。第四環(huán)節(jié)學(xué)生討論活動(dòng)內(nèi)容:比較以下兩種運(yùn)算的聯(lián)系與區(qū)別:(1)a(a+1)(a—1)=a3—a(2)a3—a=a(a+1)(a—1)在第三環(huán)節(jié)的運(yùn)算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?結(jié)論:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變形叫做把這個(gè)多項(xiàng)式因式分解。辨一辨:下列變形是因式分解嗎?為什么?(1)a+b=b+a(2)4x2y–8xy2+1=4xy(x–y)+1(3)a(a–b)=a2–ab(4)a2–2ab+b2=(a–b)2活動(dòng)目的:通過學(xué)生的討論,使學(xué)生更清楚以下事實(shí):(1)分解因式與整式的乘法是一種互逆關(guān)系;(2)分解因式的結(jié)果要以積的形式表示;(3)每個(gè)因式必須是整式,且每個(gè)因式的次數(shù)都必須低于原來的多項(xiàng)式的次數(shù);(4)必須分解到每個(gè)多項(xiàng)式不能再分解為止。注意事項(xiàng):學(xué)生通過討論,能找出分解因式與整式的乘法的聯(lián)系與區(qū)別,基本清楚了“分解因式與整式的乘法是一種互逆關(guān)系”以及“分解因式的結(jié)果要以積的形式表示”這兩種事實(shí),后兩種事實(shí)是在老師的引導(dǎo)與啟發(fā)下才能完成。第五環(huán)節(jié)反饋練習(xí)活動(dòng)內(nèi)容:看誰連得準(zhǔn)x2—y2.(x+1)29—25x2y(x—y)x2+2x+1(3—5x)(3+5x)xy—y2(x+y)(x—y)下列哪些變形是因式分解,為什么?(1)(a+3)(a—3)=a2—9(2)a2—4=(a+2)(a—2)(3)a2—b2+1=(a+b)(a—b)+1(4)2πR+2πr=2π(R+r)活動(dòng)目的:通過學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對(duì)因式分解意義的理解是否到位,以便教師能及時(shí)地進(jìn)行查缺補(bǔ)漏。注意事項(xiàng):從學(xué)生的反饋情況來看,學(xué)生對(duì)因式分解意義的理解基本到位。第六環(huán)節(jié)學(xué)生反思活動(dòng)內(nèi)容:從今天的課程中,你學(xué)到了哪些知識(shí)?掌握了哪些方法?明白了哪些道理?活動(dòng)目的:通過學(xué)生的回顧與反思,強(qiáng)化學(xué)生對(duì)因式分解意義的理解,進(jìn)一步清楚地了解分解因式與整式的乘法的互逆關(guān)系,加深對(duì)類比的數(shù)學(xué)思想的理解,對(duì)矛盾對(duì)立統(tǒng)一的觀點(diǎn)有一個(gè)初步認(rèn)識(shí)。注意事項(xiàng):從學(xué)生的反思來看,學(xué)生掌握了新的知識(shí),提高了逆向思維的能力,對(duì)于類比的數(shù)學(xué)思想有了一定的理解,對(duì)于矛盾對(duì)立統(tǒng)一的哲學(xué)觀點(diǎn)也有了一個(gè)初步認(rèn)識(shí)。鞏固練習(xí):,2,3題思考題:(給學(xué)有余力的同學(xué)做)四、教學(xué)反思傳統(tǒng)教學(xué)中,總是先介紹因式分解的定義,然后通過大量的模仿練習(xí)來強(qiáng)化鞏固學(xué)生對(duì)因式分解概念的記憶與理解,其本質(zhì)上是對(duì)因式分解的概念進(jìn)行強(qiáng)化記憶。在新課程的教學(xué)中,對(duì)因式分解的記憶退到了次要的位置,它把因式分解作為培養(yǎng)學(xué)生逆向思維、全面思考、靈活解決矛盾的載體。在教師的指導(dǎo)下,學(xué)生通過因數(shù)分解類比出因式分解,對(duì)學(xué)生進(jìn)行類比的數(shù)學(xué)思想培養(yǎng),由整式的乘法與因式分解的對(duì)比,對(duì)學(xué)生的逆向思維能力進(jìn)行培養(yǎng),也使得學(xué)生對(duì)于因式分解概念的引入不至于茫然。盡管新舊兩種教法的對(duì)比上,新課程的教學(xué)不一定馬上顯露出強(qiáng)勁的優(yōu)勢(shì),甚至可能因?yàn)閺?qiáng)化練習(xí)較少,在短時(shí)間內(nèi),學(xué)生的成績(jī)比不上傳統(tǒng)教法的學(xué)生成績(jī),但從長(zhǎng)遠(yuǎn)目標(biāo)看來,這種對(duì)數(shù)學(xué)本質(zhì)的訓(xùn)練會(huì)有效地提高學(xué)生的數(shù)學(xué)素養(yǎng),培養(yǎng)出學(xué)生對(duì)數(shù)學(xué)本質(zhì)的理解,而不僅僅是停留在對(duì)數(shù)學(xué)的機(jī)械模仿記憶的層面上??傊?,教學(xué)的著眼點(diǎn),不是熟練技能,而是發(fā)展思維,使學(xué)生在學(xué)習(xí)的情感態(tài)度與價(jià)值觀上發(fā)生深刻的變化。分解因式教學(xué)設(shè)計(jì)7因式分解是初中代數(shù)的重要內(nèi)容,因其分解方法較多,題型變化較大,教學(xué)有一定難度。轉(zhuǎn)化思想是數(shù)學(xué)的重要解題思想,對(duì)于靈活較大的題型進(jìn)行因式分解,應(yīng)用轉(zhuǎn)化思想,有章可循,易于理解掌握,能收到較好的效果。因式分解的基本方法是:提取公因式法、應(yīng)用公式法、十字相乘法。對(duì)于結(jié)構(gòu)比較簡(jiǎn)單的題型可直接應(yīng)用它們來進(jìn)行因式分解,學(xué)生能夠容易掌握與應(yīng)用。但對(duì)于分組分解法、折項(xiàng)、添項(xiàng)法就有些把握不住,應(yīng)用轉(zhuǎn)化就思想就能起到關(guān)鍵的作用。分組分解法實(shí)質(zhì)是一種手段,通過分組,每組采用三種基本方法進(jìn)行因式分解,從而達(dá)到分組的目的,這就利用了轉(zhuǎn)換思想??聪旅鎺桌豪?a2+2ab+2ac+bc解:原式 =(4a2+2ab)+(2ac+bc)=2a(2a+b)+c(2a+b)=(2a+b)(2a+c)分組后,每組提出公因式后,產(chǎn)生新的公因式能夠繼續(xù)分解因式,從而達(dá)到分解目的。例4a24ab22b解:原式=(4a2b2)(4a+2b)=(2a+b)(2ab)2(2a+b)=(2a+b)(2ab2)按“二、二”分組,每組應(yīng)用提公因式法,或用平方差公式,從而繼續(xù)分解因式。例x2y2+z22xz解:原式=(x22xz+z2)y2=(xz2)y2=(x+yz)(xyz)四項(xiàng)式按“三一”分組,使三項(xiàng)一組應(yīng)用完全平方式,再應(yīng)用平方差進(jìn)行因式分解。對(duì)于五項(xiàng)式一般可采用“三二”分組。三項(xiàng)這一組可采用提公因式法、完全平方式或十字相乘法,二項(xiàng)這一組可采用提公因式法或平方差公式分解,因此變化性較大。例x24xy+4y2x+2y解:原式=(x24xy+4y2)(x2y)=(x2y)2(x2y)=(x2y)(x2y1)例a2b2+4a+2b+3解:原式=(a2+4a+4)(b22b+1)=(a+2)2(b1)2=(a+2+b1)(a+2b+1)=(a+b+1)(ab+3)對(duì)于六項(xiàng)式可進(jìn)行“二、二、二”分組,“三、三”分組,或“三、二、一”分組。例ax2axy+bx2bxycx2+cxy①解:原式=(ax2axy)+(bx2bxy)(cx2cxy)=ax(xy)+bx(xy)cx(xy)=(xy)(ax+bxcx)=x(xy)(a+bc)②解:原式=(ax2+bx2cx2)(axy+bxycxy)=x2(a+bc)xy(a+bc)=x(xy)(a+bc)例x22xy+y2+2x2y+1解:原式=(x22xy+y2)+(2x2y)+1=(xy)2+2(xy)+1=(xy+1)2對(duì)于折項(xiàng)、添項(xiàng)法也可轉(zhuǎn)化成這三種基本的方法來進(jìn)行因式分解。例x4+4y4解:原式=(x4+4x2y2+4y4)4x2y2=(x2+2y2)24x2y2=(x2+2xy+2y2)(x22xy+2y2)例x423x2+1解:原式=x4+2x2+125x2=(x2+1)225x2=(x25x+1)(x2+5x+1)又如x37x6可用折項(xiàng)、添項(xiàng)多種方法分解因式:⑴x37x6=(x3x)(6x+6)⑵x37x6=(x34x)(3x+6)⑶x37x6=(x3+2x2+x)(2x2+8x+6)⑷x37x6=(x36x27x)+(6x26)只有掌握好三種基本的因式分解方法,才能應(yīng)用轉(zhuǎn)化思想處理靈活性較大、技巧性較強(qiáng)的題型。分解因式教學(xué)設(shè)計(jì)8一、設(shè)計(jì)思想本節(jié)課是圍繞“引導(dǎo)學(xué)生有效預(yù)習(xí)”的課題設(shè)計(jì)的,通過預(yù)設(shè)的問題引發(fā)學(xué)生思考,在學(xué)生的預(yù)習(xí)基礎(chǔ)上回答相關(guān)的問題,產(chǎn)生對(duì)整式的乘法、提公因式法和公式法的對(duì)比。讓學(xué)生充分自主的對(duì)知識(shí)產(chǎn)生探究,同時(shí)利用數(shù)形結(jié)合的思想驗(yàn)證平方差公式;再通過質(zhì)疑的方式加深對(duì)平方差公式結(jié)構(gòu)特征的認(rèn)識(shí),有助于讓學(xué)生在應(yīng)用平方差公式行分解因式時(shí)注意到它的前提條件;通過例題練習(xí)的鞏固,讓學(xué)生把握教材,吃透教材,讓學(xué)生更加熟練、
點(diǎn)擊復(fù)制文檔內(nèi)容
電大資料相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1