freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx八年級數(shù)學(xué)分解因式教學(xué)設(shè)計-免費閱讀

2024-11-16 00:27 上一頁面

下一頁面
  

【正文】 3a2+ 4a2b3 對比上,新課程的教學(xué)不一定馬上顯露出強勁的優(yōu)勢,甚至可能因為強化練習(xí)較少,在短時間內(nèi),學(xué)生的成績比不上傳統(tǒng)教法的學(xué)生成績,但從長遠(yuǎn)目標(biāo)看來,這種對數(shù)學(xué)本質(zhì)的訓(xùn)練會有效地提高學(xué)生的數(shù)學(xué)素養(yǎng),培養(yǎng)出學(xué)生對數(shù)學(xué)本質(zhì)的理解,而不僅僅是停留在對數(shù)學(xué)的機械模仿記憶的層面上。第五環(huán)節(jié)反饋練習(xí)活動內(nèi)容:看誰連得準(zhǔn)x2—y2.(x+1)29—25x2y(x—y)x2+2x+1(3—5x)(3+5x)xy—y2(x+y)(x—y)下列哪些變形是因式分解,為什么?(1)(a+3)(a—3)=a2—9(2)a2—4=(a+2)(a—2)(3)a2—b2+1=(a+b)(a—b)+1(4)2πR+2πr=2π(R+r)活動目的:通過學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對因式分解意義的理解是否到位,以便教師能及時地進(jìn)行查缺補漏。注意事項:學(xué)生對于(1)(2)兩小題逆向利用乘法的分配律進(jìn)行運算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運算則有一定的困難,因此,有必要引導(dǎo)學(xué)生復(fù)習(xí)七年級所學(xué)過的整式的乘法運算中的平方差公式,幫助他們順利地逆向運用平方差公式。(2)認(rèn)識因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運用這種關(guān)系尋求因式分解的方法。因式分解是一個重要的內(nèi)容,也是難點,我認(rèn)為我對教材內(nèi)容的調(diào)整是比較適合的,但是我忽略了學(xué)生的接受能力,也沒有注意到計算題在練習(xí)方面的鞏固及題型的多樣化。講完因式分解的新課,我隨堂出了一些綜合性的練習(xí)題,才發(fā)現(xiàn)效果是不太好的。因式分解的公式是乘法公式的逆運算,所以我將因式分解提前學(xué),在學(xué)會乘法公式后暫時略過整式的除法直接學(xué)習(xí)因式分解,我認(rèn)為這樣調(diào)整后可以加強公式的熟練使用;另一方面我加強乘法公式的練習(xí)鞏固,在沒有學(xué)習(xí)因式分解之前,先針對平方差公式以及完全平方公式的應(yīng)用及逆用作了一個專題訓(xùn)練。通過公式a b =(a+b)(ab)的逆向變形,進(jìn)一步發(fā)展觀察、歸納、類比、等能力,發(fā)展有條理地思考及語言表達(dá)能力。第四篇:分解因式教學(xué)設(shè)計分解因式教學(xué)設(shè)計分解因式教學(xué)設(shè)計1教材分析因式分解是代數(shù)式的一種重要恒等變形。本章的教育價值還體現(xiàn)在使學(xué)生接受對立統(tǒng)一的觀點,培養(yǎng)學(xué)生善于觀察、善于分析、正確預(yù)見、解決問題的能力。4.通過活動1,發(fā)現(xiàn)并歸納出因式分解的又一方法:逆用整式乘法的平方差公式,得到a2b2 =(a+b)(ab)。明確因式分解是乘法公式的一種恒等變形,讓學(xué)生學(xué)會合情推理的能力,同時也培養(yǎng)了學(xué)生愛思考,善交流的良好學(xué)習(xí)慣。例x24xy+4y2x+2y解:原式=(x24xy+4y2)(x2y)=(x2y)2(x2y)=(x2y)(x2y1)例a2b2+4a+2b+3解:原式=(a2+4a+4)(b22b+1)=(a+2)2(b1)2=(a+2+b1)(a+2b+1)=(a+b+1)(ab+3)對于六項式可進(jìn)行“二、二、二”分組,“三、三”分組,或“三、二、一”分組。對于結(jié)構(gòu)比較簡單的題型可直接應(yīng)用它們來進(jìn)行因式分解,學(xué)生能夠容易掌握與應(yīng)用。鞏固練習(xí):,2,3題思考題:(給學(xué)有余力的同學(xué)做)四、教學(xué)反思傳統(tǒng)教學(xué)中,總是先介紹因式分解的定義,然后通過大量的模仿練習(xí)來強化鞏固學(xué)生對因式分解概念的記憶與理解,其本質(zhì)上是對因式分解的概念進(jìn)行強化記憶。注意事項:由于整式的乘法運算是學(xué)生在七年級已經(jīng)學(xué)習(xí)過的內(nèi)容,因此,學(xué)生能很快得出第一組式子的結(jié)果,并能很快發(fā)現(xiàn)第一組式子與第二組式子之間的聯(lián)系,從而得出第二組式子的結(jié)果。情感與態(tài)度:讓學(xué)生初步感受對立統(tǒng)一的辨證觀點以及實事求是的科學(xué)態(tài)度。一、學(xué)生知識狀況分析學(xué)生的技能基礎(chǔ):學(xué)生已經(jīng)熟悉乘法的分配律及其逆運算,并且學(xué)習(xí)了整式的乘法運算,因此,對于因式分解的引入,學(xué)生不會感到陌生,它為今天學(xué)習(xí)分解因式打下了良好基礎(chǔ)。4.教學(xué)中滲透對立統(tǒng)一,以不變應(yīng)萬變的辯證唯物主義的思想方法。2.把因式分解概念及其與整式乘法的關(guān)系作為主線,訓(xùn)練學(xué)生思維,以設(shè)疑——感知——概括——運用為教學(xué)程序,充分遵循學(xué)生的認(rèn)知規(guī)律,使學(xué)生能順利地掌握重點,突破難點,提高能力。因式分解是一個重要的內(nèi)容,也是難點,我認(rèn)為我對教材內(nèi)容的調(diào)整是比較適合的,但是我忽略了學(xué)生的接受能力,也沒有注意到計算題在練習(xí)方面的鞏固及題型的多樣化。講完因式分解的新課,我隨堂出了一些綜合性的練習(xí)題,才發(fā)現(xiàn)效果是不太好的。因式分解的公式是乘法公式的逆運算,所以我將因式分解提前學(xué),在學(xué)會乘法公式后暫時略過整式的除法直接學(xué)習(xí)因式分解,我認(rèn)為這樣調(diào)整后可以加強公式的熟練使用;另一方面我加強乘法公式的練習(xí)鞏固,在沒有學(xué)習(xí)因式分解之前,先針對平方差公式以及完全平方公式的應(yīng)用及逆用作了一個專題訓(xùn)練?!窘虒W(xué)小結(jié)】通過本微課,學(xué)生能夠?qū)σ蚴椒纸庵R進(jìn)行歸納總結(jié)并運用此方法來解決問題。本微課通過典型例題,從提取公因式,到完全平方公式,平方差公式,層層遞進(jìn),讓學(xué)生能夠通過本微課,學(xué)會如何進(jìn)行多項式的因式分解,總結(jié)出相應(yīng)的規(guī)律。 32+2432+6332第三篇:分解因式教學(xué)設(shè)計分解因式教學(xué)設(shè)計分解因式教學(xué)設(shè)計1一、內(nèi)容和內(nèi)容解析用因式分解法解一元二次方程.教材通過實際問題得到方程,讓學(xué)生思考解決方程的方法除了之前所學(xué)習(xí)過的配方法和公式法以外,是否還有更簡單的方法解方程,接著思考為什么用這種方法可以求出方程的解,從而引出本節(jié)課的教學(xué)內(nèi)容.解一元二次方程的基本策略是降次,因式分解法將一個一元二次方程轉(zhuǎn)化為兩個一次式的乘積為零,這種思想在以后處理高次方程時也很重要.基于以上分析,確定出本節(jié)課的教學(xué)重點:會用因式分解法解特殊的一元二次方程.二、目標(biāo)和目標(biāo)解析(1)了解用因式分解法解一元二次方程的概念?!竣椤?yīng)用訓(xùn)練鞏固新知二 :(1)x2yxy2=xy(xy);(2)2x21=(2x+1)(2x1);(3)x2+3x+2=(x+1)(x+2).分析:檢驗因式分解是否正確,只要看等式右邊幾個整式相乘的積與右邊的多項式是否相等。)板書課題:167?!窘虒W(xué)重點、難點】 重點是因式分解的概念,難點是理解因式分解與整式乘法的相互關(guān)系,并運用它們之間的相互關(guān)系尋求因式分解的方法。但那利不嚴(yán)格的概念與數(shù)學(xué)的嚴(yán)謹(jǐn)性不相符。⑤a(a+1)(a-1)=__________.(2)根據(jù)上面的算式填空: ①3x2-3x=()()。②(y-3)2=__________。(3)a2-4=(a+2)(a-2)。教材在引入中是結(jié)合剪紙拼圖來闡述這一概念的,也可以與小學(xué)數(shù)學(xué)里因數(shù)分解的概念類比予以說明。觀察:a2b2=(a+b)(ab),a22ab+b2 =(ab)2,20x2+60x=20x(x+3),找出它們的特點。)因式分解與整式乘法的關(guān)系:因式分解結(jié)合:a2b2=========(a+b)(ab)整式乘法說明:從左到右是因式分解其特點是:由和差形式(多項式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點是:由整式積的形式轉(zhuǎn)化成和差形式(多項式)。唯有總結(jié)反思,才能控制思維操作,才能促進(jìn)理解,提高認(rèn)知水平,從而促進(jìn)數(shù)學(xué)觀點的形成和發(fā)展,更好地進(jìn)行知識建構(gòu),實現(xiàn)良性循環(huán)。另在還讓學(xué)生體會到配方法和公式法適用于所有方程,但有時計算量比較大,因式分解法適用于一部分一元二次方程,但是三種方法都體現(xiàn)了降次的基本思想.五、目標(biāo)檢測設(shè)計解下列方程1.【設(shè)計意圖】利用提取公因式法解方程.2.【設(shè)計意圖】利用平方差公式解方程.3.【設(shè)計意圖】利用因式分解法不適合的方程可選擇用公式法或配方法解決.4.【設(shè)計意圖】選用適當(dāng)?shù)姆椒ń夥匠?分解因式教學(xué)設(shè)計2教學(xué)準(zhǔn)備教學(xué)目標(biāo)知識與能力1.了解多項式公因式的意義,初步會用提公因式法分解因式;2.通過找公因式,培養(yǎng)觀察能力.過程與方法1.了解因式分解的概念,以及因式分解與整式乘法的關(guān)系;2.了解公因式概念和提取公因式的方法;會用提取公因式法分解因式.情感態(tài)度與價值觀1.在探索提公因式法分解因式的過程中學(xué)會逆向思維,滲透化歸的思想方法;2.培養(yǎng)觀察、聯(lián)想能力,進(jìn)一步了解換元的思想方法;教學(xué)重難點重點:能觀察出多項式的公因式,并根據(jù)分配律把公因式提出來.難點: 識別多項式的公因式.教學(xué)過程一、新課導(dǎo)入請同學(xué)們想一想?993-99能被100整除嗎?解法一:993-99=970299-99=970200解法二:993-99=99(992-1)=99(99+1)(99-1)=1009998=970200(1)已知:x=5,ab=3,求ax2bx2的值.(2)已知:a=101,b=99,求a2b2的值.你能說說算得快的原因嗎?解:(1) ax2bx2=x2(a-b)=253=75.(2) a2b2=(a+b)(a-b)=(101+99)(101-99)=400二、新知探究做一做:計算下列各式:①3x(x2)= __3x26x②m(a+b+c)= ma+mb+mc③(m+4)(m4)= m216④(x2)2= x24x+4⑤a(a+1)(a1)= a3a根據(jù)左面的算式填空:①3x26x=(_3x__)(_x2__)②ma+mb+mc=(_m_)(a+b+c_)③m216=(_m+4)(m4_)④x24x+4=(x2)2⑤a3a=(a)(a+1)(a1)左邊一組的變形是什么運算?右邊的變形與這種運算有什么不同?右邊變形的結(jié)果有什么共同的特點?總結(jié): 把一個多項式化成了幾個整式的積的形式,像這樣的式子變形叫做把這個多項式因式分解,也叫做把這個多項式分解因式.整式乘法 因式分解與整式乘法是互逆過程 因式分解在am+bm=m(a+b)中,m叫做多項式各項的公因式.公因式:即每個單項式都含有的相同的因式.提公因式法:如果多項式的各項有公因式,可以把這個公因式提到括號外面,將多項式寫成乘積的形式.這種分解因式的方法叫做提公因式法.確定公因式的方法:(1)公因式的系數(shù)是多項式各項系數(shù)的最大公約數(shù);(2)字母取多項式各項中都含有的相同的字母;(3)相同字母的指數(shù)取各項中最小的一個,即最低次冪.三、例題分析例1 把12a4b3+16a2b3c2分解因式.解:12a4b3+16a2b3c2=4a2b3超過四項的多項式是學(xué)生學(xué)習(xí)難點,如何進(jìn)行分組是關(guān)鍵。四、教學(xué)重點:利用平方差公式進(jìn)行分解因式五、教學(xué)難點:領(lǐng)會因式分解的39。然后講授提公因式法、公式法(包括平方差、完全平方公式),講課的時候是一個公式一節(jié)課,先分解公式符合條件的形式再練習(xí),主要是以練習(xí)為重。靈活運用公式(特別與冪的運算性質(zhì)相結(jié)合的公式)的能力較差,如要將9-25x2化成32-(5x)2然后應(yīng)用平方差公式這樣的題目卻無從下手。目標(biāo)制定的思想1.目標(biāo)具體化、明確化,從學(xué)生實際出發(fā),具有針對性和可行性,同時便于上課操作,便于檢測和及時反饋。三、獨立練習(xí),鞏固新知練習(xí)1.下列由左邊到右邊的變形,哪些是因式分解?哪些不是?為什么?①(x+2)(x2)=x24②x24=(x+2)(x2)③a22ab+b2=(ab)2④3a(a+2)=3a2+6a⑤3a2+6a=3a(a+2)2.因式分解與整式乘法的關(guān)系:因式分解結(jié)合:a2b2=========(a+b)(ab)整式乘法說明:從左到右是因式分解其特點是:由和差形式(多項式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點是:由整式積的形式轉(zhuǎn)化成和差形式(多項式)。七.課堂小結(jié),了解學(xué)生對概念的熟悉程度和歸納概括能力、語言表達(dá)能力、知識運用能力,教師恰當(dāng)?shù)亟o予引導(dǎo)和啟迪。數(shù)學(xué)能力:(1)由學(xué)生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關(guān)系,培養(yǎng)學(xué)生的觀察能力,進(jìn)一步發(fā)展學(xué)生的類比思想。第二環(huán)節(jié)看誰想得快活動內(nèi)容:993–99能被哪些數(shù)整除?你是怎么得出來的?學(xué)生思考:從以上問題的解決中,你知道解決這些問題的關(guān)鍵是什么?活動目的:引導(dǎo)學(xué)生把這個式子分解成幾個數(shù)的積的形式,繼續(xù)強化學(xué)生對因數(shù)分解的理解,為學(xué)生類比因式分解提供必要的精神準(zhǔn)備。注意事項:從學(xué)生的反饋情況來看,學(xué)生對因式分解意義的理解基本到位。分解因式教學(xué)設(shè)計7因式分解是初中代數(shù)的重要內(nèi)容,因其分解方法較多,題型變化較大,教學(xué)有一定難度。例x2y2+z22xz解:原式=(x22xz+z2)y2=(xz2)y2=(x+yz)(xyz)四項式按“三一”分組,使三項一組應(yīng)用完全平方式,再應(yīng)用平方差進(jìn)行因式分解。二、教材分析本節(jié)課是運用提公因式法后公式法的第一課時——用平方差公式法分解因式。(二)過程與方法1.經(jīng)歷探究分解因式方法的過程,體會整式乘法與分解因式之間的聯(lián)系。本章教材是在學(xué)生學(xué)習(xí)了整式運算的基礎(chǔ)上提出來的,事實上,它是整式乘法的逆向運用,與整式乘法運算有密切的聯(lián)系。通過活動4,能將高偶指數(shù)冪轉(zhuǎn)化為2次指數(shù)冪,培養(yǎng)學(xué)生的化歸思想。本章的教育價值還體現(xiàn)在使學(xué)生接受對立統(tǒng)一的觀點,培養(yǎng)學(xué)生善于觀察、善于分析、正確預(yù)見、解決問題的能力。分解因式教學(xué)設(shè)計2一、教材:人教版八年級數(shù)學(xué)第十四章公式法分解因式二、設(shè)計思路:從教材的地位與作用看:⑴本節(jié)課的主要內(nèi)容是平方差公式的推導(dǎo)和平方差公式在整式乘法中的應(yīng)用.⑵它是在學(xué)生已經(jīng)掌握單項式乘法、多項式乘法基礎(chǔ)上的拓展和創(chuàng)造性應(yīng)用;⑶是對多項式乘法中出現(xiàn)的較為特殊的算式的第一種歸納、總結(jié);是從一般到特殊的認(rèn)識過程的范例.⑷它應(yīng)用十分廣泛,通過乘法公式的學(xué)習(xí),可以豐富教學(xué)內(nèi)容,、分式運算及其它代數(shù)式變形的重要基礎(chǔ).從學(xué)生學(xué)習(xí)過程的角度看:⑴學(xué)生
點擊復(fù)制文檔內(nèi)容
電大資料相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1