freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx八年級數(shù)學(xué)分解因式教學(xué)設(shè)計(jì)-預(yù)覽頁

2024-11-16 00:27 上一頁面

下一頁面
 

【正文】 (1)計(jì)算下列各式: ①(m+4)(m-4)=__________。⑤a(a+1)(a-1)=__________.(2)根據(jù)上面的算式填空: ①3x2-3x=()()。(2)6ax-3ax2=3ax(2-x)。但那利不嚴(yán)格的概念與數(shù)學(xué)的嚴(yán)謹(jǐn)性不相符。第二篇:分解因式教學(xué)設(shè)計(jì)《分解因式》教學(xué)設(shè)計(jì)【教學(xué)內(nèi)容分析】因式分解的概念是把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,它是因式分解方法的理論基礎(chǔ),也是本章中一個(gè)重要概念。【教學(xué)重點(diǎn)、難點(diǎn)】 重點(diǎn)是因式分解的概念,難點(diǎn)是理解因式分解與整式乘法的相互關(guān)系,并運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。(多媒體出示答案)(1)a2b2=(a+b)(ab)=(101+99)(10199)=400;(2)a22ab+b2=(ab)2=(99+1)2 =10000;(3)20x2+60x=20x(x+3)=20x(3)(3+3)=0。)板書課題:167。㈣、導(dǎo)學(xué)交流探究發(fā)現(xiàn)二讓學(xué)生繼續(xù)觀察:(a+b)(ab)= a2b2 ,(ab)2= a22ab+b2,20x(x+3)= 20x2+60x,它們是什么運(yùn)算?與因式分解有何關(guān)系?它們有何聯(lián)系與區(qū)別?(要注意讓學(xué)生區(qū)分因式分解與整式乘法的區(qū)別,防止學(xué)生出現(xiàn)在進(jìn)行因式分解當(dāng)中,半路又做乘法的錯(cuò)誤?!竣?、應(yīng)用訓(xùn)練鞏固新知二 :(1)x2yxy2=xy(xy);(2)2x21=(2x+1)(2x1);(3)x2+3x+2=(x+1)(x+2).分析:檢驗(yàn)因式分解是否正確,只要看等式右邊幾個(gè)整式相乘的積與右邊的多項(xiàng)式是否相等。【課堂小結(jié)交給學(xué)生,讓學(xué)生總結(jié)本節(jié)課中概念的發(fā)現(xiàn)過程,運(yùn)用概念分析問題的過程,養(yǎng)成學(xué)生學(xué)習(xí)——總結(jié)——學(xué)習(xí)的良好習(xí)慣。 32+2432+6332第三篇:分解因式教學(xué)設(shè)計(jì)分解因式教學(xué)設(shè)計(jì)分解因式教學(xué)設(shè)計(jì)1一、內(nèi)容和內(nèi)容解析用因式分解法解一元二次方程.教材通過實(shí)際問題得到方程,讓學(xué)生思考解決方程的方法除了之前所學(xué)習(xí)過的配方法和公式法以外,是否還有更簡單的方法解方程,接著思考為什么用這種方法可以求出方程的解,從而引出本節(jié)課的教學(xué)內(nèi)容.解一元二次方程的基本策略是降次,因式分解法將一個(gè)一元二次方程轉(zhuǎn)化為兩個(gè)一次式的乘積為零,這種思想在以后處理高次方程時(shí)也很重要.基于以上分析,確定出本節(jié)課的教學(xué)重點(diǎn):會(huì)用因式分解法解特殊的一元二次方程.二、目標(biāo)和目標(biāo)解析(1)了解用因式分解法解一元二次方程的概念。而因式分解法需要將一元二次方程化為兩個(gè)一次項(xiàng)乘積為零的形式。本微課通過典型例題,從提取公因式,到完全平方公式,平方差公式,層層遞進(jìn),讓學(xué)生能夠通過本微課,學(xué)會(huì)如何進(jìn)行多項(xiàng)式的因式分解,總結(jié)出相應(yīng)的規(guī)律。:為了讓學(xué)生能夠通過本微課掌握因式分解基本方法,通過相應(yīng)的變形整理達(dá)到可以提取公因式和運(yùn)用公式法進(jìn)行因式分解?!窘虒W(xué)小結(jié)】通過本微課,學(xué)生能夠?qū)σ蚴椒纸庵R(shí)進(jìn)行歸納總結(jié)并運(yùn)用此方法來解決問題。1把a(bǔ)(xy)b(yx)+c(xy)分解因式正確的結(jié)果是()A、(xy)(ab+c)B、(yx)(abc)C、(xy)(a+bc)D、(yx)(a+bc)(2xy)(2x+y)是下列哪一個(gè)多項(xiàng)式分解因式后所得的答案()A、4x2y2B、4x2+y2C、4x2y2D、4x2+y2mn+是下列哪個(gè)多項(xiàng)式的一個(gè)因式()A、(mn)2+(mn)+B、(mn)2+(mn)+C、(mn)2(mn)+D、(mn)2(mn)+分解因式a42a2b2+b4的結(jié)果是()A、a2(a22b2)+b4B、(ab)2C、(ab)4D、(a+b)2(ab)2分解因式教學(xué)設(shè)計(jì)4一、教材:人教版八年級數(shù)學(xué)第十四章公式法分解因式二、設(shè)計(jì)思路:從教材的地位與作用看:⑴本節(jié)課的主要內(nèi)容是平方差公式的推導(dǎo)和平方差公式在整式乘法中的應(yīng)用.⑵它是在學(xué)生已經(jīng)掌握單項(xiàng)式乘法、多項(xiàng)式乘法基礎(chǔ)上的拓展和創(chuàng)造性應(yīng)用;⑶是對多項(xiàng)式乘法中出現(xiàn)的較為特殊的算式的第一種歸納、總結(jié);是從一般到特殊的認(rèn)識(shí)過程的范例.⑷它應(yīng)用十分廣泛,通過乘法公式的學(xué)習(xí),可以豐富教學(xué)內(nèi)容,、分式運(yùn)算及其它代數(shù)式變形的重要基礎(chǔ).從學(xué)生學(xué)習(xí)過程的角度看:⑴學(xué)生剛學(xué)過多項(xiàng)式的乘法,已經(jīng)具備學(xué)習(xí)和運(yùn)用平方差公式的知識(shí)結(jié)構(gòu);⑵由于學(xué)生初次學(xué)習(xí)乘法公式,認(rèn)清公式結(jié)構(gòu)并不容易,因此,教學(xué)時(shí)不可拔高要求,追求一步到位;⑶學(xué)生在本節(jié)課學(xué)習(xí)過程中出現(xiàn)的錯(cuò)誤,迸發(fā)出的思維火花、情感都是本節(jié)課較好的教學(xué)資源.三、教學(xué)目標(biāo):(1)知識(shí)與技能1.經(jīng)歷逆用平方差公式的過程.2.會(huì)運(yùn)用平方差公式,并能運(yùn)用公式進(jìn)行簡單的分解因式.(2)過程與方法1.在逆用平方差公式的過程中,培養(yǎng)符號(hào)感和推理能力.2.培養(yǎng)學(xué)生觀察、歸納、概括的能力.(3)情感與價(jià)值觀要求:在分解過程中發(fā)現(xiàn)規(guī)律,并能用符號(hào)表示,從而體會(huì)數(shù)學(xué)的簡捷美;讓學(xué)生在合作探究的學(xué)習(xí)過程中體驗(yàn)成功的喜悅;培養(yǎng)學(xué)生敢于挑戰(zhàn);勇于探索的精神和善于觀察、大膽創(chuàng)新的思維品質(zhì)。因式分解的公式是乘法公式的逆運(yùn)算,所以我將因式分解提前學(xué),在學(xué)會(huì)乘法公式后暫時(shí)略過整式的除法直接學(xué)習(xí)因式分解,我認(rèn)為這樣調(diào)整后可以加強(qiáng)公式的熟練使用;另一方面我加強(qiáng)乘法公式的練習(xí)鞏固,在沒有學(xué)習(xí)因式分解之前,先針對平方差公式以及完全平方公式的應(yīng)用及逆用作了一個(gè)專題訓(xùn)練。而我也強(qiáng)調(diào)的就是因式分解與乘法公式是相反方向的變形,并且在練習(xí)中一再將公式羅列出來。講完因式分解的新課,我隨堂出了一些綜合性的練習(xí)題,才發(fā)現(xiàn)效果是不太好的。導(dǎo)致他們對于與公式相同或者相似的式子比較熟悉而需要轉(zhuǎn)化的或者多種公式混合使用的式子就難以入手。因式分解是一個(gè)重要的內(nèi)容,也是難點(diǎn),我認(rèn)為我對教材內(nèi)容的調(diào)整是比較適合的,但是我忽略了學(xué)生的接受能力,也沒有注意到計(jì)算題在練習(xí)方面的鞏固及題型的多樣化。情感目標(biāo):培養(yǎng)學(xué)生接受矛盾的對立統(tǒng)一觀點(diǎn),獨(dú)立思考,勇于探索的精神和實(shí)事求是的科學(xué)態(tài)度。2.把因式分解概念及其與整式乘法的關(guān)系作為主線,訓(xùn)練學(xué)生思維,以設(shè)疑——感知——概括——運(yùn)用為教學(xué)程序,充分遵循學(xué)生的認(rèn)知規(guī)律,使學(xué)生能順利地掌握重點(diǎn),突破難點(diǎn),提高能力。板書課題: 因式分解1.因式分解概念:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式叫做因式分解,也叫分解因式。4.教學(xué)中滲透對立統(tǒng)一,以不變應(yīng)萬變的辯證唯物主義的思想方法。2.通過例題及練習(xí),了解學(xué)生對概念的理解程度和實(shí)際運(yùn)用能力,最大限度地讓學(xué)生暴露問題和認(rèn)知誤差,及時(shí)發(fā)現(xiàn)和彌補(bǔ)教與學(xué)中的遺漏和不足,從而及時(shí)調(diào)控教與學(xué)。一、學(xué)生知識(shí)狀況分析學(xué)生的技能基礎(chǔ):學(xué)生已經(jīng)熟悉乘法的分配律及其逆運(yùn)算,并且學(xué)習(xí)了整式的乘法運(yùn)算,因此,對于因式分解的引入,學(xué)生不會(huì)感到陌生,它為今天學(xué)習(xí)分解因式打下了良好基礎(chǔ)。(2)認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運(yùn)用這種關(guān)系尋求因式分解的方法。情感與態(tài)度:讓學(xué)生初步感受對立統(tǒng)一的辨證觀點(diǎn)以及實(shí)事求是的科學(xué)態(tài)度。注意事項(xiàng):學(xué)生對于(1)(2)兩小題逆向利用乘法的分配律進(jìn)行運(yùn)算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運(yùn)算則有一定的困難,因此,有必要引導(dǎo)學(xué)生復(fù)習(xí)七年級所學(xué)過的整式的乘法運(yùn)算中的平方差公式,幫助他們順利地逆向運(yùn)用平方差公式。注意事項(xiàng):由于整式的乘法運(yùn)算是學(xué)生在七年級已經(jīng)學(xué)習(xí)過的內(nèi)容,因此,學(xué)生能很快得出第一組式子的結(jié)果,并能很快發(fā)現(xiàn)第一組式子與第二組式子之間的聯(lián)系,從而得出第二組式子的結(jié)果。第五環(huán)節(jié)反饋練習(xí)活動(dòng)內(nèi)容:看誰連得準(zhǔn)x2—y2.(x+1)29—25x2y(x—y)x2+2x+1(3—5x)(3+5x)xy—y2(x+y)(x—y)下列哪些變形是因式分解,為什么?(1)(a+3)(a—3)=a2—9(2)a2—4=(a+2)(a—2)(3)a2—b2+1=(a+b)(a—b)+1(4)2πR+2πr=2π(R+r)活動(dòng)目的:通過學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對因式分解意義的理解是否到位,以便教師能及時(shí)地進(jìn)行查缺補(bǔ)漏。鞏固練習(xí):,2,3題思考題:(給學(xué)有余力的同學(xué)做)四、教學(xué)反思傳統(tǒng)教學(xué)中,總是先介紹因式分解的定義,然后通過大量的模仿練習(xí)來強(qiáng)化鞏固學(xué)生對因式分解概念的記憶與理解,其本質(zhì)上是對因式分解的概念進(jìn)行強(qiáng)化記憶??傊?,教學(xué)的著眼點(diǎn),不是熟練技能,而是發(fā)展思維,使學(xué)生在學(xué)習(xí)的情感態(tài)度與價(jià)值觀上發(fā)生深刻的變化。對于結(jié)構(gòu)比較簡單的題型可直接應(yīng)用它們來進(jìn)行因式分解,學(xué)生能夠容易掌握與應(yīng)用。例4a24ab22b解:原式=(4a2b2)(4a+2b)=(2a+b)(2ab)2(2a+b)=(2a+b)(2ab2)按“二、二”分組,每組應(yīng)用提公因式法,或用平方差公式,從而繼續(xù)分解因式。例x24xy+4y2x+2y解:原式=(x24xy+4y2)(x2y)=(x2y)2(x2y)=(x2y)(x2y1)例a2b2+4a+2b+3解:原式=(a2+4a+4)(b22b+1)=(a+2)2(b1)2=(a+2+b1)(a+2b+1)=(a+b+1)(ab+3)對于六項(xiàng)式可進(jìn)行“二、二、二”分組,“三、三”分組,或“三、二、一”分組。讓學(xué)生充分自主的對知識(shí)產(chǎn)生探究,同時(shí)利用數(shù)形結(jié)合的思想驗(yàn)證平方差公式;再通過質(zhì)疑的方式加深對平方差公式結(jié)構(gòu)特征的認(rèn)識(shí),有助于讓學(xué)生在應(yīng)用平方差公式行分解因式時(shí)注意到它的前提條件;通過例題練習(xí)的鞏固,讓學(xué)生把握教材,吃透教材,讓學(xué)生更加熟練、準(zhǔn)確,起到強(qiáng)化、鞏固的作用,讓學(xué)生領(lǐng)會(huì)換元的思想,達(dá)到初步發(fā)展學(xué)生綜合應(yīng)用的能力。明確因式分解是乘法公式的一種恒等變形,讓學(xué)生學(xué)會(huì)合情推理的能力,同時(shí)也培養(yǎng)了學(xué)生愛思考,善交流的良好學(xué)習(xí)慣。2.掌握提公因式法、平方差公式分解因式的綜合應(yīng)用。4.通過活動(dòng)1,發(fā)現(xiàn)并歸納出因式分解的又一方法:逆用整式乘法的平方差公式,得到a2b2 =(a+b)(ab)?!稊?shù)學(xué)課程標(biāo)準(zhǔn)》雖然降低了因式分解的特殊技巧的要求,也對因式分解常用的四種方法減少為兩種,且公式法的應(yīng)用中,也減少為兩個(gè)公式,但絲毫沒有否定因式分解的教育價(jià)值及其在代數(shù)運(yùn)算中的重要作用。本章的教育價(jià)值還體現(xiàn)在使學(xué)生接受對立統(tǒng)一的觀點(diǎn),培養(yǎng)學(xué)生善于觀察、善于分析、正確預(yù)見、解決問題的能力。能運(yùn)用提公因式法、公式法進(jìn)行綜合運(yùn)用。第四篇:分解因式教學(xué)設(shè)計(jì)分解因式教學(xué)設(shè)計(jì)分解因式教學(xué)設(shè)計(jì)1教材分析因式分解是代數(shù)式的一種重要恒等變形。分解因式這一章在整個(gè)教材中起到了承上啟下的作用。通過公式a b =(a+b)(ab)的逆向變形,進(jìn)一步發(fā)展觀察、歸納、類比、等能力,發(fā)展有條理地思考及語言表達(dá)能力。難點(diǎn):平方差公式的推導(dǎo)及其運(yùn)用,兩種因式分解方法(提公因式法、平方差公式)的綜合運(yùn)用。因式分解的公式是乘法公式的逆運(yùn)算,所以我將因式分解提前學(xué),在學(xué)會(huì)乘法公式后暫時(shí)略過整式的除法直接學(xué)習(xí)因式分解,我認(rèn)為這樣調(diào)整后可以加強(qiáng)公式的熟練使用;另一方面我加強(qiáng)乘法公式的練習(xí)鞏固,在沒有學(xué)習(xí)因式分解之前,先針對平方差公式以及完全平方公式的應(yīng)用及逆用作了一個(gè)專題訓(xùn)練。而我也強(qiáng)調(diào)的就是因式分解與乘法公式是相反方向的變形,并且在練習(xí)中一再將公式羅列出來。講完因式分解的新課,我隨堂出了一些綜合性的練習(xí)題,才發(fā)現(xiàn)效果是不太好的。導(dǎo)致他們對于與公式相同或者相似的式子比較熟悉而需要轉(zhuǎn)化的或者多種公式混合使用的式子就難以入手。因式分解是一個(gè)重要的內(nèi)容,也是難點(diǎn),我認(rèn)為我對教材內(nèi)容的調(diào)整是比較適合的,但是我忽略了學(xué)生的接受能力,也沒有注意到計(jì)算題在練習(xí)方面的鞏固及題型的多樣化。一、學(xué)生知識(shí)狀況分析學(xué)生的技能基礎(chǔ):學(xué)生已經(jīng)熟悉乘法的分配律及其逆運(yùn)算,并且學(xué)習(xí)了整式的乘法運(yùn)算,因此,對于因式分解的引入,學(xué)生不會(huì)感到陌生,它為今天學(xué)習(xí)分解因式打下了良好基礎(chǔ)。(2)認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運(yùn)用這種關(guān)系尋求因式分解的方法。情感與態(tài)度:讓學(xué)生初步感受對立統(tǒng)一的辨證觀點(diǎn)以及實(shí)事求是的科學(xué)態(tài)度。注意事項(xiàng):學(xué)生對于(1)(2)兩小題逆向利用乘法的分配律進(jìn)行運(yùn)算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運(yùn)算則有一定的困難,因此,有必要引導(dǎo)學(xué)生復(fù)習(xí)七年級所學(xué)過的整式的乘法運(yùn)算中的平方差公式,幫助他們順利地逆向運(yùn)用平方差公式。注意事項(xiàng):由于整式的乘法運(yùn)算是學(xué)生在七年級已經(jīng)學(xué)習(xí)過的內(nèi)容,因此,學(xué)生能很快得出第一組式子的結(jié)果,并能很快發(fā)現(xiàn)第一組式子與第二組式子之間的聯(lián)系,從而得出第二組式子的結(jié)果。第五環(huán)節(jié)反饋練習(xí)活動(dòng)內(nèi)容:看誰連得準(zhǔn)x2—y2.(x+1)29—25x2y(x—y)x2+2x+1(3—5x)(3+5x)xy—y2(x+y)(x—y)下列哪些變形是因式分解,為什么?(1)(a+3)(a—3)=a2—9(2)a2—4=(a+2)(a—2)(3)a2—b2+1=(a+b)(a—b)+1(4)2πR+2πr=2π(R+r)活動(dòng)目的:通過學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對因式分解意義的理解是否到位,以便教師能及時(shí)地進(jìn)行查缺補(bǔ)漏。鞏固練習(xí):,2,3題思考題:(給學(xué)有余力的同學(xué)做)四、教學(xué)反思傳統(tǒng)教學(xué)中,總是先介紹因式分解的定義,然后通過大量的模仿練習(xí)來強(qiáng)化鞏固學(xué)生對因式分解概念的記憶與理解,其本質(zhì)上是對因式分解的概念進(jìn)行強(qiáng)化記憶。對比上,新課程的教學(xué)不一定馬上顯露出強(qiáng)勁的優(yōu)勢,甚至可能因?yàn)閺?qiáng)化練習(xí)較少,在短時(shí)間內(nèi),學(xué)生的成績比不上傳統(tǒng)教法的學(xué)生成績,但從長遠(yuǎn)目標(biāo)看來,這種對數(shù)學(xué)本質(zhì)的訓(xùn)練會(huì)有效地提高學(xué)生的數(shù)學(xué)素養(yǎng),培養(yǎng)出學(xué)生對數(shù)學(xué)本質(zhì)的理解,而不僅僅是停留在對數(shù)學(xué)的機(jī)械模仿記憶的層面上。(2)學(xué)會(huì)觀察方程特征,選用適當(dāng)方法解決一元二次方程.(1)學(xué)生能理解因式分解法的概念,掌握因式分解法解一元二次方程的一般步驟,會(huì)利用因式分解求解特殊的一元二次方程。3a2+ 4a2b3
點(diǎn)擊復(fù)制文檔內(nèi)容
電大資料相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1