freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

等腰三角形的性質(zhì)說(shuō)課稿全文5篇(編輯修改稿)

2024-11-15 05:56 本頁(yè)面
 

【文章內(nèi)容簡(jiǎn)介】 。四、學(xué)法設(shè)計(jì)《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:數(shù)學(xué)的抽象結(jié)論,應(yīng)以觀察、實(shí)驗(yàn)為前提,幾何教學(xué)應(yīng)該把實(shí)驗(yàn)方法與邏輯分析結(jié)合起來(lái)。結(jié)合這一理念在探究等腰三角形的性質(zhì)時(shí)我將采用學(xué)生實(shí)驗(yàn)操作、小組合作、觀察發(fā)現(xiàn)、師生互動(dòng)、學(xué)生互動(dòng)的學(xué)習(xí)方式。五、教學(xué)過(guò)程設(shè)計(jì)(一)創(chuàng)設(shè)情景、導(dǎo)入新課①?gòu)?fù)習(xí)提問(wèn):向同學(xué)們出示幾張精美的建筑物圖片,引入等腰三角形。(設(shè)計(jì)意圖:感知數(shù)學(xué)知識(shí)和實(shí)際生活聯(lián)系緊密,培養(yǎng)觀察力,感受身邊處處有數(shù)學(xué)。)②等腰三角形的相關(guān)概念:1定義:兩條邊相等的三角形叫做等腰三角形。邊:等腰三角形中,相等的兩條邊叫做腰,另一條邊叫做底邊。角:等腰三角形中,兩腰的夾角叫做頂角,腰和底邊的夾角叫做底角。③設(shè)問(wèn):等腰三角形具有哪些特殊的性質(zhì)呢?(引入新課)(二)實(shí)驗(yàn)探索、得出猜想:①動(dòng)動(dòng)手:讓同學(xué)們用剪刀在長(zhǎng)方形紙片上剪下等腰三角形,每個(gè)人的等腰三角形的大小和形狀可以不一樣,把紙片對(duì)折,讓兩腰重合在一起,你能發(fā)現(xiàn)什么現(xiàn)象?“比一比”看誰(shuí)思考的結(jié)論最多。(設(shè)計(jì)意圖:以六人小組為單位學(xué)生親自操作實(shí)驗(yàn),填寫導(dǎo)學(xué)案。通過(guò)組內(nèi)合作與交流,集思廣益讓學(xué)生用自己的語(yǔ)言在小組內(nèi)表達(dá)自己的發(fā)現(xiàn)。)②得出猜想:可讓學(xué)生有充分的時(shí)間觀察、思考、交流、可能得到的結(jié)論:(1)等腰三角形是軸對(duì)稱圖形(2)∠B=∠C(3)BD=CD,AD為底邊上的中線(4)∠ADB=∠ADC=90176。,AD為底邊上的高線(5)∠BAD=∠CAD,AD為頂角平分線(設(shè)計(jì)意圖:以小組為單位派代表發(fā)言即組間交流補(bǔ)充,引導(dǎo)歸納提煉,使不同層次的學(xué)生都能感受新知,建立新的知識(shí)體系,為進(jìn)一步探索做準(zhǔn)備。)(三)證明猜想、形成定理:結(jié)論(2)∠B=∠C你能用一個(gè)命題表達(dá)這一結(jié)論并論證它的正確性嗎?(1)語(yǔ)言總結(jié):等腰三角形的兩底角相等。(簡(jiǎn)寫成“等邊對(duì)等角”)(2)怎樣論證這個(gè)一命題的正確性呢?①為證∠B=∠C,需要添加輔助線構(gòu)造以∠B、∠C為元素的兩個(gè)全等三角形。②探討添加輔助線的方法,讓學(xué)生選擇一種輔助線并完成證明過(guò)程。設(shè)計(jì)說(shuō)明:以上過(guò)程分小組討論,在探索過(guò)程中鼓勵(lì)學(xué)生尋求不同(作高、中線、角平分線)的方法來(lái)解決問(wèn)題。利用展臺(tái)展示各小組不同的證明方法,讓學(xué)生的個(gè)性得到充分的展示。(3)得出等腰三角形的性質(zhì)1:等腰三角形的兩底角相等。(簡(jiǎn)寫成“等邊對(duì)等角”)結(jié)論(3)(4)(5)你也能用一個(gè)命題表達(dá)這一結(jié)論并論證它的正確性嗎?(1)結(jié)合性質(zhì)一的證明鼓勵(lì)學(xué)生證明總結(jié)的命題(2)得出等腰三角形的性質(zhì)2:等腰三角形的頂角的平分線,底邊上的中線,底邊上的高互相重合。(3)“三線合一”的幾何表達(dá):如圖,在△ABC中,AB=AC,點(diǎn)D在BC上①(1)如果∠BAD=∠CAD,那么AD⊥BC,BD=CD②(2)如果BD=CD,那么∠BAD=∠CAD,AD⊥BC(為了方便記憶可以說(shuō)成“知一求二!”)③(3)如果AD⊥BC,那么∠BAD=∠CAD,BD=CD2設(shè)計(jì)意圖:充分調(diào)動(dòng)各組學(xué)生的積極性、主動(dòng)性,采用各小組競(jìng)爭(zhēng)的方式,參照性質(zhì)1的探索完成本性質(zhì)的探索與證明。通過(guò)本性質(zhì)的探索讓不同的學(xué)生有不同的收獲,讓每個(gè)學(xué)生的能力都得到提升。(四)實(shí)例剖析、鞏固新知:例1:已知:在△ABC中,AB=AC,∠B=80176。,求∠C和∠A的度數(shù)例2:在△ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),∠B=30(1)求∠ADC的度數(shù)(2)求∠BAD的度數(shù)此題的目的在于等腰三角形“等邊對(duì)等角”和“三線合一”性質(zhì)的綜合運(yùn)用,以及怎么書寫解答題,強(qiáng)調(diào)“三線合一”的表達(dá)過(guò)程。解:(1)∵AB=AC,D是BC邊上的中點(diǎn)(已知)∴AD⊥BC,∠BAD=∠CAD(等腰三角形的“三線合一”)∴∠ADC=∠ADB=90176。(垂直的定義)(2)∵∠BAD+∠B+∠ADB=180176。(三角形內(nèi)角和等于180176。)∴∠BAD=180176。∠B∠ADB=180176。30176。90176。=60176。(設(shè)計(jì)意圖:設(shè)計(jì)例題1鞏固等腰三角形“等邊對(duì)等角的性質(zhì)”的理解,讓學(xué)生學(xué)以致用,獲得成就感,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的自信心。而例題2主要是體會(huì)等腰三角形“三線合一”性質(zhì)的運(yùn)用。這兩個(gè)例題作為課本上的例題是基礎(chǔ)新知的鞏固,要求能正確的寫出解題過(guò)程。)(五)、課堂練習(xí)、總結(jié)所得:先完成課后81頁(yè)練習(xí)4題(設(shè)計(jì)意圖:作為課本上的練習(xí)題的完成達(dá)到檢測(cè)學(xué)生對(duì)本節(jié)課知識(shí)的掌握情況,從而幫助學(xué)生查漏補(bǔ)缺,鞏固基礎(chǔ)知識(shí)。)學(xué)以致用:(設(shè)計(jì)意圖:讓書生體會(huì)數(shù)學(xué)知識(shí)和實(shí)際生活的緊密聯(lián)系)如圖,是西安半坡博物館屋頂?shù)慕孛鎴D,:①工人師傅在測(cè)量了∠B為37176。以后,并沒(méi)有測(cè)量∠C,就說(shuō)∠C的度數(shù)也是37176。②工人師傅要加固屋頂,他們通過(guò)測(cè)量找到了橫梁BC的中點(diǎn)D,然后在AD兩點(diǎn)之間釘上一根木樁,他們認(rèn)為木樁是垂直橫梁的。請(qǐng)同學(xué)們想想,工人師傅的說(shuō)法對(duì)嗎?請(qǐng)說(shuō)明理由。設(shè)計(jì)意圖:運(yùn)用所學(xué)知識(shí)解決實(shí)際問(wèn)題,引導(dǎo)學(xué)生將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,進(jìn)一步加深學(xué)生對(duì)等腰三角形性質(zhì)的理解和運(yùn)用;從數(shù)學(xué)回到實(shí)際生活,自然地滲透數(shù)學(xué)作用于實(shí)際問(wèn)題的思想。課堂小結(jié)今天我們學(xué)習(xí)了什么?你覺(jué)得在等腰三角形的學(xué)習(xí)中要注意哪些問(wèn)題?設(shè)計(jì)意圖:幫助學(xué)生回顧,歸納,鞏固所學(xué)知識(shí)。A(六)作業(yè)布置、深化提高:課本P84:、3;(必做題)(思維發(fā)散)選做題已知:如圖△ABC中,AB=AC,CE⊥AEE1于E,CE=BCB2求證:∠ACE=∠BC六、板書設(shè)計(jì)等腰三角形的性質(zhì)說(shuō)課稿7一、教材分析教材分析之地位和作用《等腰三角形的性質(zhì)》是“華東師大版七年級(jí)數(shù)學(xué)(下)”第九章第三節(jié)的內(nèi)容。本課安排在《軸對(duì)稱的認(rèn)識(shí)》后,明確了《等腰三角形的性質(zhì)》與《軸對(duì)稱的認(rèn)識(shí)》的聯(lián)系,起到知識(shí)的鏈接與開(kāi)拓的作用。本課內(nèi)容在初中數(shù)學(xué)教學(xué)中起著比較重要的作用,它是對(duì)三角形的性質(zhì)的呈現(xiàn)。通過(guò)等腰三角形的性質(zhì)反映在一個(gè)三角形中“等邊對(duì)等角”的邊角關(guān)系,并且是對(duì)軸對(duì)稱圖形性質(zhì)的直觀反映(三線合一)。它所倡導(dǎo)的“觀察發(fā)現(xiàn)猜想論證”的數(shù)學(xué)思想方法是今后研究數(shù)學(xué)的基本思想方法。因此,本節(jié)內(nèi)容在教材中處于非常重要的地位,起著承前啟后的作用。教材分析之教學(xué)目標(biāo)①知識(shí)與技能目標(biāo):掌握等腰三角形的有關(guān)概念和相關(guān)性質(zhì)。熟練運(yùn)用等腰三角形的性質(zhì)解決等腰三角形內(nèi)角以及邊的計(jì)算問(wèn)題。②過(guò)程與方法目標(biāo):通過(guò)對(duì)性質(zhì)的探究活動(dòng)和例題的分析,培養(yǎng)學(xué)生多角度思考問(wèn)題的習(xí)慣,提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。③情感與態(tài)度目標(biāo):通過(guò)對(duì)等腰三角形的觀察、試驗(yàn)、歸納,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索性和創(chuàng)造性,突出數(shù)學(xué)就在我們身邊。在操作活動(dòng)中,培養(yǎng)學(xué)生之間的合作精神,在獨(dú)立思考的同時(shí)能夠認(rèn)同他人。教材分析之教學(xué)重難點(diǎn)重點(diǎn):探索等腰三角形“等邊對(duì)等角”和“三線合一”的性質(zhì)。(這兩個(gè)性質(zhì)對(duì)于平面幾何中的計(jì)算,以及今后的證明尤為重要,故確定為重點(diǎn))難點(diǎn):等腰三角形中關(guān)于底和腰,底角和頂角的計(jì)算問(wèn)題。(由于等腰三角形底和腰,底角和頂角性質(zhì)特點(diǎn)很容易混淆,而且它們?cè)谟梅ê陀懻撋虾苡锌季?,只能練?xí)實(shí)踐中獲取經(jīng)驗(yàn),故確定為難點(diǎn)。)教材分析之教法數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科,因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”,“教必有法而教無(wú)定法”,只有方法得當(dāng),才會(huì)有效。根據(jù)本課內(nèi)容特點(diǎn)和初一學(xué)生思維活動(dòng)的特點(diǎn),我采用了教具直觀教學(xué)法,聯(lián)想發(fā)現(xiàn)教學(xué)法,設(shè)疑思考法,逐步滲透法和師生交際相結(jié)合的方法。教材分析之學(xué)法最有價(jià)值的知識(shí)是關(guān)于方法的知識(shí),首先對(duì)于我們教師應(yīng)該創(chuàng)造一種環(huán)境,引導(dǎo)學(xué)生從已知的、熟悉的知識(shí)入手,讓學(xué)生自己不知不覺(jué)中運(yùn)用舊知識(shí)的鑰匙去打開(kāi)新知識(shí)的大門,進(jìn)入新知識(shí)的領(lǐng)域。本節(jié)課我將采用學(xué)生小組合作,實(shí)驗(yàn)操作,觀察發(fā)現(xiàn),師生互動(dòng),學(xué)生互動(dòng)的學(xué)習(xí)方式。學(xué)生通過(guò)小組合作學(xué)會(huì)“主動(dòng)探究主動(dòng)總結(jié)主動(dòng)提高”。突出學(xué)生是學(xué)習(xí)的主體,他們?cè)诟惺苤R(shí)的過(guò)程中,提高他們“探究發(fā)現(xiàn)聯(lián)想概括”的能力!二、教學(xué)過(guò)程:創(chuàng)設(shè)情景①?gòu)?fù)習(xí)提問(wèn):向同學(xué)們出示幾張精美的建筑物圖片。問(wèn)題:軸對(duì)稱圖形的概念?這些圖片中有軸對(duì)稱圖形嗎?②引入新課:再次通過(guò)精美的建筑物圖片,找出里面的等腰三角形。問(wèn)題:等腰三角形是軸對(duì)稱圖形嗎?③相關(guān)概念:定義:兩條邊相等的三角形叫做等腰三角形。邊:等腰三角形中,相等的兩條邊叫做腰,:等腰三角形中,兩腰的夾角叫做頂角,、探究問(wèn)題①動(dòng)動(dòng)手:讓同學(xué)們做出一張等腰三角形的半透明的紙片,每個(gè)人的等腰三角形的大小和形狀可以不一樣,把紙片對(duì)折,讓兩腰重合在一起,你能發(fā)現(xiàn)什么現(xiàn)象?請(qǐng)你盡可能多的寫出結(jié)論。②得出結(jié)論:可讓學(xué)生有充分的時(shí)間觀察、思考、交流、可能得到的結(jié)論:(1)等腰三角形是軸對(duì)稱圖形(2)∠B=∠C(3)BD=CD,AD為底邊上的中線(4)∠ADB=∠ADC=90176。,AD為底邊上的高線(5)∠BAD=∠CAD,AD為頂角平分線重要性質(zhì)性質(zhì)1:等腰三角形的兩底角相等。(簡(jiǎn)寫成“等邊對(duì)等角”)性質(zhì)2:等腰三角形的頂角的平分線,底邊上的中線,底邊上的高互相重合。(簡(jiǎn)稱“三線合一”)如圖,在△ABC中,AB=AC,點(diǎn)D在BC上(1)如果∠BAD=∠CAD,那么AD⊥BC,BD=CD(2)如果BD=CD,那么∠BAD=∠CAD,AD⊥BC(3)如果AD⊥BC,那么∠BAD=∠CAD,BD=CD(為了方便記憶可以說(shuō)成“知一求二!”)等腰三角形的性質(zhì)說(shuō)課稿8一、說(shuō)教材本節(jié)課是在學(xué)生掌握了一般三角形基礎(chǔ)知識(shí)和初步推論證明的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,擔(dān)負(fù)著訓(xùn)練學(xué)生學(xué)會(huì)分析證明思路的任務(wù),在培養(yǎng)學(xué)生邏輯推理能力方面有著非常重要的作用。等腰三角形兩底角相等的性質(zhì)是今后論證兩角相等的的依據(jù)之一,等腰三角形底邊上的三條主要線段重合的性質(zhì)是今后論證兩條線段相等、兩個(gè)角相等及兩條直線垂直的重要依據(jù),因此在教材中處于非常重要的地位。二、說(shuō)教學(xué)目標(biāo)知識(shí)與能力:探索并掌握等腰三角形性質(zhì)定理,能運(yùn)用它們進(jìn)行有關(guān)的論證和計(jì)算。理解等腰三角形和等邊三角形性質(zhì)定理之間的聯(lián)系。過(guò)程與方法:培養(yǎng)學(xué)生對(duì)命題的抽象概括能力,逐步滲透幾何證題的基本思想方法:分析法和綜合法。情感與態(tài)度:引導(dǎo)學(xué)生進(jìn)行規(guī)律的再發(fā)現(xiàn),培養(yǎng)學(xué)生勇于實(shí)踐、大膽探索的精神。加強(qiáng)學(xué)生數(shù)學(xué)應(yīng)用意識(shí)。三、教學(xué)重點(diǎn)與難點(diǎn)重點(diǎn):等腰三角形的性質(zhì)定理。難點(diǎn):等腰三角形三線合一性質(zhì)的運(yùn)用四、說(shuō)教法與學(xué)法課堂教學(xué)要體現(xiàn)以學(xué)生發(fā)展為本的精神,因此本堂課我采取了“開(kāi)放型的探究式”教學(xué)模式,從問(wèn)題提出到問(wèn)題解決都竭力把參與認(rèn)知過(guò)程的主動(dòng)權(quán)交給學(xué)生,使學(xué)生全面參與、全員參與、全程參與,真正確立其主體地位。而教師只是作為數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者、合作者,及時(shí)地給以引導(dǎo)、點(diǎn)撥、糾正。五、說(shuō)教學(xué)過(guò)程:學(xué)生的學(xué)習(xí)過(guò)程是在其原有認(rèn)知基礎(chǔ)上的主動(dòng)建構(gòu),因此我依據(jù)學(xué)生的認(rèn)知規(guī)律將教學(xué)過(guò)程分為以下五個(gè)環(huán)節(jié):教學(xué)過(guò)程教學(xué)活動(dòng)設(shè)計(jì)意圖一、回顧與思考電腦展示人字型屋頂?shù)膱D像,提問(wèn):屋頂設(shè)計(jì)成了何種幾何圖形?我們都知道它是一種特殊的三角形,那么它特殊在哪里呢?(兩腰相等,是軸對(duì)稱圖形)它的對(duì)稱軸是哪一條呢?由日常生活中的等腰三角形引出課題,目的在于培養(yǎng)學(xué)生從實(shí)際問(wèn)題中抽象出數(shù)學(xué)問(wèn)題的能力。同時(shí)創(chuàng)造豐富的舊知環(huán)境,有利于幫助學(xué)生找準(zhǔn)新舊知識(shí)的連接點(diǎn),特別是問(wèn)題3,其實(shí)就是等腰三角形三線合一性質(zhì)的伏筆。除了這些特殊點(diǎn),等腰三角形還有其它特殊性質(zhì)嗎?這節(jié)課我們就要一起來(lái)研究等腰三角形的性質(zhì)(由此引出課題)現(xiàn)代教學(xué)論認(rèn)為,在正式進(jìn)行發(fā)現(xiàn)過(guò)程前要讓學(xué)生對(duì)探索的目標(biāo)、意義認(rèn)識(shí)得十分明確,做好探索的物質(zhì)準(zhǔn)備和精神準(zhǔn)備。二、觀察與表達(dá)觀察猜想請(qǐng)同學(xué)們拿出準(zhǔn)備好的等腰三角形,與教師一起按照要求,把兩腰疊在一起,觀察一下你有什么發(fā)現(xiàn)。教師用多媒體課件演示等腰三角形ABC疊合情況,請(qǐng)學(xué)生思考你能得出哪些結(jié)論。得出定理學(xué)生回答發(fā)現(xiàn)后,教師給予指導(dǎo),用規(guī)范的數(shù)學(xué)語(yǔ)言進(jìn)行逐條歸納,得出兩個(gè)性質(zhì)定理:定理1:等腰三角形兩底角相等。定理2:等腰三角形的頂角平分線、底邊上的中線和高線互相重合。通過(guò)讓學(xué)生動(dòng)手操作,觀察、猜想,體驗(yàn)知識(shí)的發(fā)生、發(fā)現(xiàn)過(guò)程,變灌注知識(shí)為學(xué)生主動(dòng)獲取知識(shí)。學(xué)習(xí)內(nèi)容不再以定論的形式呈現(xiàn),而是以問(wèn)題形式間接呈現(xiàn);學(xué)習(xí)的心理機(jī)制不再是僅僅是同化,而是順應(yīng)。三、了解與探究探索定理一、(A組口答,B組獨(dú)立解答)A組:等腰直角三角形的兩個(gè)銳角各等于幾度?若等腰三角形頂角為40度,則它的頂角為幾度?若等腰三角形底角為40度,則它的底角為幾度?B組:若等腰三角形一個(gè)內(nèi)角為40度,則它的其余各角為幾度?若等腰三角形一個(gè)內(nèi)角為120度,則它的其余各角為幾度?一個(gè)內(nèi)角為60度,則它的其余各角為幾度?(A組口答,B組獨(dú)立解答)由此引出推論:等邊三角形各個(gè)角都相等,且各個(gè)角都等于60176。二、根據(jù)性質(zhì)2填空:(1)∵AB=AC,AD⊥BC,∴。(2)∵AB=AC,BD=CD,∴。AB D C(3)∵AB=AC,∠1=∠2,∴。為了對(duì)定理進(jìn)行進(jìn)一步探索,設(shè)計(jì)了以下練習(xí):練習(xí)一的整體設(shè)計(jì)遵循低起點(diǎn)、小分階、大容量、高密度的原則,其目的是要學(xué)生掌握應(yīng)用等腰三角形性質(zhì)定理1與三角形內(nèi)角和定理求角的度數(shù)的規(guī)律,但教師不是直接將規(guī)律灌輸給學(xué)生,而是讓學(xué)生在練習(xí)過(guò)程中自己發(fā)現(xiàn)規(guī)律,使學(xué)生獲得從問(wèn)題中探索共同屬性的思維能力。從認(rèn)知結(jié)構(gòu)看,利用三線合一性質(zhì)來(lái)證明角相等、線段相等或垂直與學(xué)生原有認(rèn)知結(jié)構(gòu)聯(lián)系較少,需要建構(gòu)新的認(rèn)知結(jié)構(gòu),是一種“順應(yīng)”過(guò)程,對(duì)學(xué)生來(lái)說(shuō)有一定困難,因此設(shè)計(jì)了下面一組填空題,幫助學(xué)生進(jìn)行建構(gòu)活動(dòng)。同時(shí),提醒學(xué)生注意性質(zhì)應(yīng)用應(yīng)以等腰三角形為前提,為例2的教學(xué)作了輔墊,起到分散難點(diǎn)的作用。四、應(yīng)用與提高應(yīng)用舉例:如圖,某房屋的頂角∠BAC=120176。,過(guò)屋頂A的立柱AD⊥BC,屋椽AB=AC,求頂架上的∠B, ∠C, ∠CAD的度數(shù)。例1:求證等腰三角形兩底角平分線相等AE DB C由于這是個(gè)用文字語(yǔ)言敘述的的幾何命題,師生
點(diǎn)擊復(fù)制文檔內(nèi)容
合同協(xié)議相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1