【總結】第1頁共25頁普通高中課程標準實驗教科書—數學[人教版]高三新數學第一輪復習教案(講座39)—排列、組合、二項式定理一.課標要求:1.分類加法計數原理、分步乘法計數原理通過實例,總結出分類加法計數原理、分步乘法計數原理;能根據具體問題的特征,選擇分類加法計數原理或分步乘法計數原理解決一些簡單的實際問題;
2025-07-24 14:36
【總結】小學奧數排列組合例題知識點撥:一.加法原理:做一件事情,完成它有N類辦法,在第一類辦法中有M1中不同的方法,在第二類辦法中有M2中不同的方法,……,在第N類辦法中有Mn種不同的方法,那么完成這件事情共有M1+M2+……+Mn種不同的方法。二.乘法原理:如果完成某項任務,可分為k個步驟,完成第一步有n1種不同的方法,完成第二步有n2種不同的方法,…
2025-03-24 03:09
【總結】排列組合加乘原理:排列組合
2025-03-24 03:20
【總結】組合(2)2022/8/302④要明確堆的順序時,必須先分堆后再把堆數當作元素個數作全排列.②若干個不同的元素局部“等分”有m個均等堆,要將選取出每一個堆的組合數的乘積除以m!①若干個不同的元素“等分”為m個堆,要將選取出每一個堆的組合數的乘積除以m!③非均分堆問題,只要按比例取出分完再用乘法原理作積
2025-08-05 16:59
【總結】排列組合復習計數的基本原理排列組合排列數Anm公式組合數Cnm公式組合數的兩個性質應用本章知識結構分類計數原理完成一件事,有n類辦法,在第1類辦法中,有m1種不同的方法,在第2類辦法中,有m2種不同的方法……在第n類辦法中,
2024-11-11 05:50
【總結】引例問題1從甲、乙、丙3名同學中選出2名參加某天的一項活動,其中1名同學參加上午的活動,1名同學參加下午的活動,有多少種不同的方法?第1步,確定參加上午活動的同學,從3人中任選1人有3種方法;第2步,確定參加下午活動的同學,只能從余下的2人中選,有2種方法.
2024-11-11 09:01
【總結】排列組合應用題數學教研組盛建芳復習回顧??!!!!mmnnPnCmmnm???1、排列??????????121121!mnnnPnnnnmPnnnn??????????????
2025-08-15 23:43
【總結】§排列、組合及其應用要點梳理(1)排列的定義:從n個的元素中取出m(m≤n)個元素,按照一定的排成一列,叫做從n個不同的元素中取出m個元素的一個排列.(2)排列數的定義:從n個不同的元素中取出m(m≤n)個元素的的個數叫做從
2025-08-05 19:06
【總結】排列組合復習二、重點難點三、綜合練習四、復習建議一、知識結構基本原理組合排列排列數公式組合數公式組合數性質應用問題一、知識結構二、重點難點1.兩個基本原理
2024-11-18 00:34
【總結】排列組合,1,2,3,4,5可以組成多少個沒有重復數字五位奇數.解:由于末位和首位有特殊要求,應該優(yōu)先安排,以免不合要求的元素占了這兩個位置.先排末位共有然后排首位共有最后排其它位置共有由分步計數原理得練習題:7種不同的花種在排成一列的花盆里,若兩種葵花不種在中間,也不種在兩端的花盆里,問有多少不同的種法?
2025-08-05 18:16
【總結】一,映射與排列組合問題變式:同(2)257對集合A中元素進行分類。二,排列組合中的映射思維通過集合A與另一個集合B之間的映射關系,將對集合A中元素的計數問題轉化為對集合B的計數。且A與B是一一對應關系。三,構造法解排列組合題例6,有若干名棋手參加的單循環(huán)制象棋比賽,其中有2名棋手各比賽
2024-11-10 03:08
【總結】例“歡樂今宵”節(jié)目中,拿出兩個信箱.其中存放著先后兩次競猜中成績優(yōu)秀的觀眾來信.甲信箱中有30封,乙信箱中有20封.現由主持人抽獎確定幸運觀眾,若先確定一名“幸運之星”,然后再從兩信箱中各確定一名幸運伙伴,有多少種不同的結果?練習.如圖,一個地區(qū)分為5個行政區(qū)域,現給地圖著色,要求相鄰區(qū)域不得使用同一種
2024-11-09 06:20
【總結】《組合數學》第一章組合數學基礎第1章組合數學基礎1.排列組合的基本計數問題2.多項式系數的計算及其組合意義3.排列組合算法緒論(一)背景起源:數學游戲幻方問題:給定自然數1,2,…,n2,將其排列成n階方陣,要求每行、每列和每條對角線上n個數字之和都相等。這樣的n階方陣稱為n階幻方
2025-07-24 23:18
【總結】排列組合常見題型及解題策略一.可重復的排列求冪法:重復排列問題要區(qū)分兩類元素:一類可以重復,另一類不能重復,把不能重復的元素看作“客”,能重復的元素看作“店”,則通過“住店法”可順利解題,在這類問題使用住店處理的策略中,關鍵是在正確判斷哪個底數,哪個是指數【例1】(1)有4名學生報名參加數學、物理、化學競賽,每人限報一科,有多少種不同的報名方法?(2)有4名學生參加爭奪數學、
2025-08-04 18:28
【總結】排列組合復習課教學設計------龍巖二中郭小峰排列組合復習課一.教學內容分析:、組合都是研究事物在某種給定的模式下所有可能的配置的數目問題,它們之間的主要區(qū)別在于是否要考慮選出元素的先后順序,不需要考慮順序的是組合問題,需要考慮順序的是排列問題,排列是在組合的基礎上對入選的元素進行排隊,因此,分析解決排列組合問題的基本思維是“先組,后排”.,要注意四點:(1)
2025-05-01 04:21