【總結(jié)】平面幾何中的幾個(gè)重要定理一.塞瓦定理塞瓦(G。Ceva1647—1743),意大利著名數(shù)學(xué)家。塞瓦定理設(shè)為三邊所在直線外一點(diǎn),連接分別和的邊或三邊的延長(zhǎng)線交于(如圖1),則與塞瓦定理同樣重要的還有下面的定理。塞瓦定理逆定理設(shè)為的邊或三邊的延長(zhǎng)線上的三點(diǎn)(都在三邊上或只有其中之一在邊上),如果有
2025-08-22 20:55
【總結(jié)】競(jìng)賽專題講座-平面幾何四個(gè)重要定理重慶市育才中學(xué)瞿明強(qiáng) 四個(gè)重要定理:梅涅勞斯(Menelaus)定理(梅氏線)△ABC的三邊BC、CA、AB或其延長(zhǎng)線上有點(diǎn)P、Q、R,則P、Q、R共線的充要條件是四個(gè)重要定理:。塞瓦(Ceva)定理(塞瓦點(diǎn))△ABC的三邊BC、CA、AB上有點(diǎn)P、Q、R,則AP、BQ、CR共點(diǎn)的充要條件是。托勒密
2025-06-20 00:20
【總結(jié)】平面幾何中幾個(gè)重要定理及其證明一、塞瓦定理1.塞瓦定理及其證明定理:在ABC內(nèi)一點(diǎn)P,該點(diǎn)與ABC的三個(gè)頂點(diǎn)相連所在的三條直線分別交ABC三邊AB、BC、CA于點(diǎn)D、E、F,且D、E、F三點(diǎn)均不是ABC的頂點(diǎn),則有.證明:運(yùn)用面積比可得.根據(jù)等比定理有,所以.同理可得,.三式相乘得.注:在運(yùn)用三角形的面積比時(shí),要把握住兩個(gè)
2025-06-19 22:03
【總結(jié)】平面幾何四個(gè)重要定理四個(gè)重要定理:梅涅勞斯(Menelaus)定理(梅氏線)△ABC的三邊BC、CA、AB或其延長(zhǎng)線上有點(diǎn)P、Q、R,則P、Q、R共線的充要條件是。塞瓦(Ceva)定理(塞瓦點(diǎn))△ABC的三邊BC、CA、AB上有點(diǎn)P、Q、R,則AP、BQ、CR共點(diǎn)的充要條件是。托勒密(Ptolemy)定理四邊形的兩對(duì)邊乘積之和等于其對(duì)角線乘積的
2025-06-19 21:56
【總結(jié)】平面幾何習(xí)題大全下面的平面幾何習(xí)題均是我兩年來收集的,屬競(jìng)賽范圍。共分為五種類型,1,幾何計(jì)算;2,幾何證明;3,共點(diǎn)線與共線點(diǎn);4,幾何不等式;5,經(jīng)典幾何。幾何計(jì)算-1命題設(shè)點(diǎn)D是Rt△ABC斜邊AB上的一點(diǎn),DE⊥BC于點(diǎn)E,DF⊥AC于點(diǎn)F。若AF=15,BE=10,則四邊形DECF的面積是多少?解:設(shè)DF=CE=x,DE=CF=y.∵Rt△BED∽R(shí)t△D
2025-03-25 01:21
【總結(jié)】經(jīng)典難題(一)1、已知:如圖,O是半圓的圓心,C、E是圓上的兩點(diǎn),CD⊥AB,EF⊥AB,EG⊥CO.求證:CD=GF.AFGCEBOD2、已知:如圖,P是正方形ABCD內(nèi)一點(diǎn),∠PAD=∠PDA=150.APCDB求證:△PBC是正三角形.D2C2
【總結(jié)】一、選擇題1.(重慶市2002年4分)一居民小區(qū)有一正多邊形的活動(dòng)場(chǎng)。為迎接“AAPP”會(huì)議在重慶的召開,小區(qū)管委會(huì)決定在這個(gè)多邊形的每個(gè)頂點(diǎn)處修建一個(gè)半徑為2m的扇形花臺(tái),花臺(tái)都以多邊形的頂點(diǎn)為圓心,以多邊形的內(nèi)角為圓心角,花臺(tái)占地面積共為12。若每個(gè)花臺(tái)的造價(jià)為400元,則建造這些花臺(tái)共需資金【】A2400元B2800元C3200元
2025-06-25 05:50
【總結(jié)】01凸四邊形ABCD的對(duì)角線交于點(diǎn)M,點(diǎn)P、Q分別是△AMD和△CMB重心,R、S分別是△DMC和△MAB的垂心.求證PQ⊥RS.證:過A、C分別作BD的平行線,過B、D分別作AC的平行線.這四條直線分別相交于X、W、Y、Z.則四邊形XWYZ為平行四邊形,且XW∥AC∥XZ.則四邊形XAMD、MBYC皆為平行四邊
【總結(jié)】全國(guó)高中數(shù)學(xué)聯(lián)賽平面幾何題ABCDEFMN1.(2000)如圖,在銳角三角形ABC的BC邊上有兩點(diǎn)E、F,滿足∠BAE=∠CAF,作FM⊥AB,F(xiàn)N⊥AC(M、N是垂足),延長(zhǎng)AE交三角形ABC的外接圓于D.證明:四邊形AMDN與三角形ABC的面積相等.2.(2001)如圖,△ABC中,
2025-04-04 03:22
【總結(jié)】1、平面圖形的分類及概念2、類別概念圖示線直線:沒有端點(diǎn)、它是無限長(zhǎng)的。線段:有兩個(gè)端點(diǎn)、它的長(zhǎng)度是有限的。射線:有一個(gè)端點(diǎn),它的長(zhǎng)度是無限的?;【€:圓上A、B兩點(diǎn)間的部分叫做弧。角(由一點(diǎn)引出的兩條射線所圍成的圖形)銳角:大于0°,小于90°的角。鈍角:大于90°,小于180
2025-03-24 03:16
【總結(jié)】八年級(jí)平面幾何難題集錦,已知等邊△ABC,P在AC延長(zhǎng)線上一點(diǎn),以PA為邊作等邊△APE,EC延長(zhǎng)線交BP于M,連接AM,求證:(1)BP=CE;(2)試證明:EM-PM=AM.,△ACM,△CBN都是等邊三角形,線段AN,MC交于點(diǎn)E,BM,CN交于點(diǎn)F。求證:(1)AN=MB.(2)將△ACM繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)一定角度,如圖②所示,其
2025-03-27 00:38
【總結(jié)】,,平分交于,如圖,,垂足為,,為垂足。是中點(diǎn),是中點(diǎn)。若的外接圓與的另一個(gè)交點(diǎn)為。求證:、、、四點(diǎn)共圓。.證明:作AQ延長(zhǎng)線交BC于N,則Q為AN中點(diǎn),又M為AC中點(diǎn),所以QM//BC.所以 .同理,.所以QM=PM.又因?yàn)楣矆A.所以.所以.所以P、H、B、C四點(diǎn)共圓..故 .結(jié)合,知為HP中垂
2025-06-19 23:26
【總結(jié)】教材分析本節(jié)內(nèi)容是數(shù)學(xué)必修4第二章平面向量的第一課時(shí).本節(jié)課是在學(xué)習(xí)了向量的線性運(yùn)算及向量數(shù)量積的基礎(chǔ)上進(jìn)行的,是對(duì)前面學(xué)習(xí)內(nèi)容的延續(xù)與拓展;本節(jié)的目的是讓學(xué)生加深對(duì)向量的認(rèn)識(shí),更好地體會(huì)向量這個(gè)工具的優(yōu)越性。對(duì)于向量方法,就思路而言,向量方法與平面幾何中的解析法是一致的,不同的只是用“向量和向量運(yùn)算”來代替“數(shù)和數(shù)的運(yùn)算”.同時(shí)本節(jié)課也是對(duì)向量相關(guān)知識(shí)的進(jìn)一步鞏固、應(yīng)用
2025-08-18 16:34
【總結(jié)】《初高中數(shù)學(xué)銜接教程》13410023460《初高中數(shù)學(xué)銜接教程》13410023460《初高中數(shù)學(xué)銜接教程》13410023460《初高中數(shù)學(xué)銜接教程》13410023460《初高中數(shù)學(xué)銜接教程》13410023460《初高中數(shù)學(xué)銜接教程》13410023460《初高中數(shù)學(xué)
2025-01-09 23:31