【總結】“方程的根與函數的零點”【教學目標】一、知識與技能1、通過探索一元二次方程的實根與二次函數圖象之間的關系,讓學生領會方程的根與函數零點之間的聯(lián)系,了解零點的概念.2、以具體函數在某區(qū)間上存在零點的特點,探索在某區(qū)間上圖象連續(xù)的函數存在零點條件以及個數,理解并掌握在某個區(qū)間上圖象連續(xù)的函數零點存在的判定方法.二、過程與方法
2024-11-19 04:55
【總結】方程的根與函數的零點(2)一、選擇題:1.借助計算器利用二分法確定函數f(x)=x3-3x+1的零點近似值為()(精確到)A.B.C.D.x3-4x-5=0在區(qū)間[2,3]內的實根時,取區(qū)間中點x0=,則下一個有根區(qū)間為()A.[2,3]B.[2,2,5]C.[2
2024-11-28 00:18
【總結】函數的概念班級:__________姓名:__________設計人__________日期__________課前預習·預習案【溫馨寄語】假如你曾有過虛度的時光,請不要以嘆息作為補償;明天的路途畢竟長于逝去的歲月??爝~步,前面相迎的是幸福的曙光!【學習目標】1.通過實例,體會函數是描繪變量之間對應關系的重要數
2024-12-08 22:40
【總結】“方程的根與函數的零點”反思關于課題的引入開始準備課時,我看到教材直接使用了三個具體的二次方程,畫出對應函數圖象。直接進入方程的根與對應函數圖象與x軸交點的關系。我覺得太突然,學生可能不知道為什么突然會找兩者之間的關系。于是我有大家熟悉的一元一次方程和一元二次方程以及學生不會解決的方程lnx+2x-6=0。學生會發(fā)現(xiàn),第三個方程不會解決。第三個方
2024-11-28 21:40
【總結】方程的根與函數的零點素材優(yōu)化課堂環(huán)節(jié)創(chuàng)設高效課堂——“方程的根與函數的零點”一課的教學思考高中數學教學中時常面臨著“教師教得累,學生學得累,教學效果不佳”的窘境,隨著新課標的不斷落實,高效教學成為了教師們課堂教學的一項重要追求。在教學實踐中,教師要與新課標一起成長,并真正的將教育變革落實到課堂活動中,優(yōu)化
【總結】2022/8/201人教版《普通高中課程標準實驗教科書·數學》必修12022/8/202閱讀課本第84頁章引言,了解本章我們將要學習的內容2022/8/2030322???xx062ln???xx(2)問題求解下列方程(1)?是否有根?有幾個根?如何求根?探究
2025-08-01 17:57
【總結】方程的根與函數的零點導學案學習目標:對應方程根,圖像與X軸交點,三者的聯(lián)系;2.掌握零點存在的判定定理。學習要點:1、會判斷函數的零點、方程的根與圖像與X軸交點的關系2、會利用零點存在定理去解決問題。學習過程:課前預讀:課本P70對數函數定義,P71對數函數性質表,P77
2024-11-24 16:35
【總結】冪函數班級:__________姓名:__________設計人__________日期__________課前預習·預習案【溫馨寄語】你是花季的蓓蕾,你是展翅的雄鷹,明天是你們的世界,一切因你們而光輝【學習目標】1.能熟練利用冪函數的圖象和性質解決相關的綜合問題.2.結合函數,,,,的圖象,了解
2024-12-08 01:54
【總結】函數的表示法班級:__________姓名:__________設計人__________日期__________課前預習·預習案【溫馨寄語】你想獲得優(yōu)異成果的話,請謹慎地珍惜和支配自己的時間。你愛惜你的生命,從不浪費時間,因為你知道:時間就是塑造生命的材料?!緦W習目標】1.了解函數的三種表示法,會根據題目條件不同的表
【總結】學科:數學課題:函數的零點教學目標(三維融通表述):1.通過講解學生理解理解函數零點的概念與性質,會求函數的零點,能判斷二次函數零點的存在性,了解函數的零點與方程的根之間的關系,初步形成用函數的觀點處理問題的意識。2.在對二次函數的零點與方程根的關系研究過程中,體會由特殊到一般的思維方法,通過由零點的性質作函數圖像的
2024-11-19 20:37
【總結】自我感悟教材P87—P88通過對二次函數零點所在區(qū)間其有的特點,得出一般函數y=f(x)在區(qū)間[a,6]上是否存在零點的“零點存在性定理”。請你思考以下幾個問題:(1)為何規(guī)定函數y=f(x)的圖象是連續(xù)不斷的?(2)為何只研究f(a)·f(b)
2025-03-12 14:54
【總結】函數與方程方程的根與函數的零點(1)思考??一元二次方程ax2+bx+c=0(a?0)的根與二次函數y=ax2+bx+c(a?0)的圖象有什么關系??先來觀察幾個具體的一元二次方程及其相應的二次函數,如:–x2-2x-3=0與y=x2-2x-3–x2-2x+1=0與y=x2-2x+1–x
2024-11-17 18:06
【總結】方程的根與函數的零點課標分析【課標分析】必修一第三章“函數與方程”是高中數學的新增內容,是近年來高考關注的熱點.本章函數與方程是中學數學的核心概念,并且與其他知識具有廣泛的聯(lián)系性,地位重要。本節(jié)課方程的根與函數的零點是整章內容的一個鏈結點,它從不同的角度,將數與形,函數與方程有機的聯(lián)系在一起。本節(jié)內容,學生將學習利用函數的
【總結】學習內容:【課程學習目標】1.知識與技能:(1)了解函數零點的概念:能夠結合具體方程說明方程的根、函數的零點、函數圖象與x軸的交點三者的關系;(2)理解函數零點存在性定理:了解圖象連續(xù)不斷的意義及作用;知道定理只是函數存在零點的一個充分條件;了解函數零點可能不止一個;矚慫潤厲釤瘞睞櫪廡賴賃軔朧礙鱔絹。(3)能利用函數圖象和性質判斷某些函數的零點個數,及所在區(qū)間.
2025-06-23 21:17
【總結】函數模型的應用實例班級:__________姓名:__________設計人__________日期__________課前預習·預習案【溫馨寄語】有人說:“人人都可以成為自己的幸運的建筑師。”愿你們在前行的道路上,用自己的雙手建造幸運的大廈【學習目標】1.結合實例體會直線上升、指數爆炸、對數增長等不同增
2024-12-08 01:52