【總結】 方程的根與函數(shù)的零點 1.函數(shù)零點的概念 對于函數(shù)y=f(x),我們把使f(x)=0的實數(shù)x叫做函數(shù)y=f(x)的零點.函數(shù)y=f(x)的零點就是方程f(x)=0的實數(shù)根,也就是函數(shù)y=...
2025-09-30 19:12
【總結】【金版學案】2021-2021年高中數(shù)學函數(shù)的零點學案蘇教版必修11.函數(shù)零點的概念.對于函數(shù)y=f(x)(x∈D),把使f(x)=0成立的實數(shù)x叫做函數(shù)y=f(x)(x∈D)的零點.例如:y=2x+1的函數(shù)圖象與x軸的交點為??????-12,0,有一個零點是-12.二次函數(shù)
2024-11-28 18:29
【總結】函數(shù)的表示法教學目的:(1)明確函數(shù)的三種表示方法;(2)在實際情境中,會根據(jù)不同的需要選擇恰當?shù)姆椒ū硎竞瘮?shù);(3)通過具體實例,了解簡單的分段函數(shù),并能簡單應用;(4)糾正認為“y=f(x)”就是函數(shù)的解析式的片面錯誤認識.教學重點:函數(shù)的三種表示方法,分段函數(shù)的概念.教學難點:根據(jù)不同的需要選擇恰當?shù)姆椒ū硎竞瘮?shù),什
2024-11-18 15:44
【總結】方程的根與函數(shù)的零點一、選擇題1.已知函數(shù)f(x)的圖象是連續(xù)不斷的,有如下的x,f(x)對應值表x1234567f(x)136.13615.552-210.88-88-6411.238由表可知函數(shù)f(x)存在零點的區(qū)間有(
2024-12-07 21:18
【總結】方程的根與函數(shù)的零點教學設計一、教學內容解析《方程的根與函數(shù)的零點》是人教A版必修一第三章《函數(shù)的應用》第一節(jié)的內容.必修一共分為三章,第一章介紹了函數(shù)的概念及性質,第二章引入了指、對、冪三種基本初等函數(shù).本章是函數(shù)應用問題,主要分為兩個層面:(1)數(shù)學學科內部應用,如方程的根與函數(shù)的零點的關系,可以通過函數(shù)方程思想,及數(shù)形結合思想,獲得函數(shù)的
2024-11-18 16:47
【總結】函數(shù)與方程方程的根與函數(shù)的零點(1)思考??一元二次方程ax2+bx+c=0(a?0)的根與二次函數(shù)y=ax2+bx+c(a?0)的圖象有什么關系??先來觀察幾個具體的一元二次方程及其相應的二次函數(shù),如:–x2-2x-3=0與y=x2-2x-3–x2-2x+1=0與y=x2-2x+1–x
2024-11-17 18:06
【總結】學習內容:【課程學習目標】1.知識與技能:(1)了解函數(shù)零點的概念:能夠結合具體方程說明方程的根、函數(shù)的零點、函數(shù)圖象與x軸的交點三者的關系;(2)理解函數(shù)零點存在性定理:了解圖象連續(xù)不斷的意義及作用;知道定理只是函數(shù)存在零點的一個充分條件;了解函數(shù)零點可能不止一個;矚慫潤厲釤瘞睞櫪廡賴賃軔朧礙鱔絹。(3)能利用函數(shù)圖象和性質判斷某些函數(shù)的零點個數(shù),及所在區(qū)間.
2025-06-23 21:17
【總結】函數(shù)的概念班級:__________姓名:__________設計人__________日期__________課前預習·預習案【溫馨寄語】假如你曾有過虛度的時光,請不要以嘆息作為補償;明天的路途畢竟長于逝去的歲月。快邁步,前面相迎的是幸福的曙光!【學習目標】1.通過實例,體會函數(shù)是描繪變量之間對應關系的
2024-11-28 21:42
【總結】函數(shù)的概念班級:__________姓名:__________設計人__________日期__________課后練習【基礎過關】1.下列函數(shù)中,值域為(0,+∞)的是()====x2+12.下列式子中不能表示函數(shù)的是A.B.C.D.3.函數(shù)y=+的定義域是()
【總結】“方程的根與函數(shù)的零點”教學設計一、教學內容分析:本節(jié)內容是人教版必修一第三章《函數(shù)的應用》第一節(jié)《函數(shù)與方程》的第一個內容《方程的實數(shù)根與函數(shù)的零點》,是下一節(jié)“二分法”的知識基礎。本節(jié)課的一個重要任務就是讓學生學會用函數(shù)的知識去研究方程的根的問題,通過零點概念的學習,建立方程與函數(shù)在數(shù)和形上的對應,體會函數(shù)與方程的思想解決問題的基本方法。二、教學目標分析:
【總結】教材分析函數(shù)與方程是中學數(shù)學的重要內容,函數(shù)與方程思想是高考必考的思想方法.本節(jié)是在學習了前兩章函數(shù)的性質的基礎上,結合函數(shù)的圖象和性質來判斷方程的根的存在性及根的個數(shù),從而了解函數(shù)的零點與方程的根的關系,掌握函數(shù)在某個區(qū)間上存在零點的判定方法;為下節(jié)“二分法求方程的近似解”和后續(xù)學習的算法提供了基礎.因此本節(jié)內容具有
2025-08-01 17:40
【總結】函數(shù)的概念其他版本的例題與習題1.(蘇教版)判斷下列對應是否為函數(shù):(1)x→-x,x∈R;(2)x→1,x∈R;(3)x→y,其中y=|x|,x∈R,y∈R;(4)t→s,其中,t∈R,s∈R;(5)x→y,其中=x,x∈[0,+∞],y∈R;(6)x→y,其中y為不大于x
2024-11-28 15:25
【總結】函數(shù)的表示法班級:__________姓名:__________設計人__________日期__________課前預習·預習案【溫馨寄語】你想獲得優(yōu)異成果的話,請謹慎地珍惜和支配自己的時間。你愛惜你的生命,從不浪費時間,因為你知道:時間就是塑造生命的材料?!緦W習目標】1.了解函數(shù)的三種表示法,會根據(jù)題目條件不
【總結】函數(shù)的表示法班級:__________姓名:__________設計人__________日期__________課后練習【基礎過關】1.已知是反比例函數(shù),當時,,則的函數(shù)關系式為A.B.C.D.2.已知函數(shù)若,則的取值范圍是A.B.C.D.3.已知函數(shù)f(x)=,則
2024-11-28 21:41
【總結】函數(shù)的概念活動1問題1.請同學閱讀課本1516PP?的三個實例,并完成后面的問題:①一枚炮彈發(fā)射后,經過26s落到地面擊中目標.炮彈的射高為845m,且炮彈距地面的高度為h(單位:m)隨時間t(單位:s)變化的規(guī)律是h=130t-5t2.時間t的變化范圍是數(shù)集A={t|0≤t≤26},h的變化范圍