【總結】第三章導數(shù)應用§1函數(shù)的單調性與極值1.1導數(shù)與函數(shù)的單調性一、基礎過關1.命題甲:對任意x∈(a,b),有f′(x)0;命題乙:f(x)在(a,b)內是單調遞增的.則甲是乙的()A.充分不必要條件B.必要不充分條件C.充要
2024-12-08 07:02
【總結】函數(shù)的極值一、基礎過關1.函數(shù)y=f(x)的定義域為(a,b),y=f′(x)的圖像如圖,則函數(shù)y=f(x)在開區(qū)間(a,b)內取得極小值的點有()A.1個B.2個C.3個D.4個2.下列關于函數(shù)的極值的說法正確的是
2024-12-08 05:55
【總結】本課時欄目開關填一填研一研練一練【學習要求】1.直觀了解并掌握微積分基本定理的含義.2.會利用微積分基本定理求函數(shù)的積分.【學法指導】通過探究變速直線運動物體的速度與位移的關系,直觀了解微積分基本定理的含義.微積分基本定理不僅揭示了導數(shù)和定積分之間的內在聯(lián)系,而且還提供了計算定積分的一種有
2024-11-17 17:04
【總結】高二文科期末復習題(四)一、選擇題1、已知動點M的坐標滿足方程2213|12512|xyxy????,則動點M的軌跡是()A.橢圓B.雙曲線C.拋物線D.其他圖形2、已知F1、F2是橢圓221169xy??的兩焦點,過點F2的直線交橢圓于點A、B,若|AB|=5,
2024-11-15 22:59
【總結】1.2函數(shù)的極值【學習要求】1.了解函數(shù)極值的概念,會從幾何直觀理解函數(shù)的極值與導數(shù)的關系,并會靈活應用.2.掌握函數(shù)極值的判定及求法.3.掌握函數(shù)在某一點取得極值的條件.【學法指導】函數(shù)的極值反映的是函數(shù)在某點附近的性質,是局部性質.函數(shù)極值可以在函數(shù)圖像上“眼見為實”,通過研究極值初步體會函數(shù)的導數(shù)的作用
2024-11-17 19:02
【總結】回歸分析概述回歸分析——研究變量與變量之間關系的數(shù)學方法。變量之間的關系:確定性關系函數(shù)關系,經(jīng)反復的精確試驗或嚴格的數(shù)學推導得到。如S=v﹒t。數(shù)學分析和物理學中的大多數(shù)公式屬于這種類型。到方差分析實際問題中,絕大多數(shù)情況下
2024-11-18 13:30
【總結】修水一中2020-2020學年第二學期高二第一次段考試卷文科數(shù)學命題:龍中華審題:冷文思參考公式:22()()()()()nadbckabcdacbd??????,處理相關變量x、y的公式:相關系數(shù)21211
2024-11-15 03:18
【總結】【成才之路】2021-2021學年高中數(shù)學綜合法與分析法同步檢測北師大版選修1-2一、選擇題1.分析法證明問題是從所證命題的結論出發(fā),尋求使這個結論成立的()A.充分條件B.必要條件C.充要條件D.既非充分條件又非必要條件[答案]A2.已知f(x)=x3+x,a,b,c∈R,且a+b&g
2024-11-30 11:35
【總結】2.推理案例賞析一、基礎過關1.有兩種花色的正六邊形地板磚,按下面的規(guī)律拼成若干個圖案,則第6個圖案中有底紋的正六邊形的個數(shù)是________.2.觀察下列不等式:112,1+12+131,1+12+13+…+1732,1+12+13+…+1152,1+12+13+
2024-12-08 20:18
【總結】第1章統(tǒng)計案例§獨立性檢驗一、基礎過關1.當χ2時,就有________的把握認為“x與y有關系”.2.在某醫(yī)院,因為患心臟病而住院的665名男性病人中,有214人禿頂;而另外772名不是因為患心臟病而住院的男性病人中有175人禿頂,則χ2≈__________.
2024-12-08 02:36
【總結】§直接證明與間接證明2.直接證明一、基礎過關1.已知a,b,c∈R,那么下列命題中正確的是________.①若ab,則ac2bc2②若acbc,則ab③若a3b3且ab1b④若a2b2且ab0,
【總結】§回歸分析(二)一、基礎過關1.已知x,y之間的一組數(shù)據(jù)如下表:xy則y與x之間的線性回歸方程y^=b^x+a^必過點________.2.為了考察兩個變量x和y之間的線性相關性,甲、乙兩個同學各自獨立地做10次和15次試驗,并且
【總結】§復數(shù)的四則運算一、基礎過關1.如果一個復數(shù)與它的模的和為5+3i,那么這個復數(shù)是__________.2.(1-2i)-(2-3i)+(3-4i)-…-(2008-2009i)+(2009-2010i)-(2010-2011)i+(2011-2012i)=______________.
【總結】2.演繹推理一、基礎過關1.下列表述正確的是________.①歸納推理是由部分到整體的推理;②歸納推理是由一般到一般的推理;③演繹推理是由一般到特殊的推理;④類比推理是由特殊到一般的推理;⑤類比推理是由特殊到特殊的推理.2.設a,b為兩條直線,α,β是兩個平面,則a⊥b的一個
【總結】2.間接證明一、基礎過關1.反證法的關鍵是在正確的推理下得出矛盾.這個矛盾可以是________(填序號).①與已知條件矛盾②與假設矛盾③與定義、公理、定理矛盾④與事實矛盾2.否定:“自然數(shù)a,b,c中恰有一個偶數(shù)”時正確的反設為__________________________.3.