【總結(jié)】章末檢測一、填空題1.由1=12,1+3=22,1+3+5=32,1+3+5+7=42,?,得到1+3+?+(2n-1)=n2用的是________推理.2.在△ABC中,E、F分別為AB、AC的中點(diǎn),則有EF∥BC,這個(gè)問題的大前提為________________________
2024-12-08 02:36
【總結(jié)】2.間接證明【學(xué)習(xí)要求】1.了解反證法是間接證明的一種基本方法.2.理解反證法的思考過程,會用反證法證明數(shù)學(xué)問題.【學(xué)法指導(dǎo)】反證法需要逆向思維,難點(diǎn)是由假設(shè)推出矛盾,在學(xué)習(xí)中可通過動手證明體會反證法的內(nèi)涵,歸納反證法的證題過程.本課時(shí)欄目開關(guān)填一填研一研練一練填一填
2025-01-18 01:06
【總結(jié)】第2章推理與證明2.1合情推理與演繹推理2.合情推理【課標(biāo)要求】1.了解合情推理的含義,能利用歸納和類比等進(jìn)行簡單的推理.2.了解合情推理在數(shù)學(xué)發(fā)現(xiàn)中的作用.【核心掃描】1.利用歸納和類比等進(jìn)行簡單的推理.(重點(diǎn)、難點(diǎn))2.合情推理的含義.(難點(diǎn))
2024-11-18 08:56
【總結(jié)】回歸分析【課標(biāo)要求】1.了解相關(guān)關(guān)系,理解線性回歸模型,會求線性回歸方程.2.理解相關(guān)性檢驗(yàn)的概念及必要性,掌握相關(guān)性檢驗(yàn)的步驟.3.了解回歸分析的基本思想、方法及其簡單應(yīng)用.【核心掃描】1.相關(guān)性檢驗(yàn)的必要性及步驟.(重點(diǎn))2.建立線性回歸模型,理解回歸分析的思想及應(yīng)用.
【總結(jié)】間接證明【課標(biāo)要求】1.了解間接證明的一種方法——反證法.2.了解反證法的思考過程、特點(diǎn).【核心掃描】用反證法證明問題.(重點(diǎn)、難點(diǎn))自學(xué)導(dǎo)引1.間接證明不是直接從原命題的條件逐步推得命題成立,這種的方法通常稱為間接證明.就是一種常用的間接證
2024-11-17 23:34
【總結(jié)】2021—2021學(xué)年下學(xué)期泰興市第三高級中學(xué)高二數(shù)學(xué)模擬檢測卷參考公式:線性回歸系數(shù)1221,niiiniixynxybaybxxnx?????????1.復(fù)數(shù)13zi??,21zi??,則復(fù)數(shù)12zz在
2024-12-05 09:20
【總結(jié)】本課時(shí)欄目開關(guān)畫一畫研一研本課時(shí)欄目開關(guān)畫一畫研一研題型一分類討論思想的應(yīng)用例1實(shí)數(shù)k為何值時(shí),復(fù)數(shù)(1+i)k2-(3+5i)k-2(2+3i)滿足下列條件?(1)是實(shí)數(shù);(2)是虛數(shù);(3)是純虛數(shù)
2024-11-17 23:19
【總結(jié)】§組合(二)一、基礎(chǔ)過關(guān)1.若C7n+1-C7n=C8n,則n=________.2.C03+C14+C25+C36+…+C1720的值為________.(用組合數(shù)表示)3.5本不同的書全部分給4名學(xué)生,每名學(xué)生至少一本,不同的分法種數(shù)為________.4.某施工小組有男工7人
2024-12-08 20:17
【總結(jié)】第3章統(tǒng)計(jì)案例§獨(dú)立性檢驗(yàn)一、基礎(chǔ)過關(guān)1.當(dāng)χ2時(shí),就有________的把握認(rèn)為“x與y有關(guān)系”.2.在某醫(yī)院,因?yàn)榛夹呐K病而住院的665名男性病人中,有214人禿頂;而另外772名不是因?yàn)榛夹呐K病而住院的男性病人中有175人禿頂,則χ2≈__________.(結(jié)
【總結(jié)】§排列(二)一、基礎(chǔ)過關(guān)1.把4個(gè)不同的黑球,4個(gè)不同的紅球排成一排,要求黑球、紅球分別在一起,不同的排法種數(shù)是________.2.6個(gè)停車位置,有3輛汽車需要停放,若要使3個(gè)空位連在一起,則停放的方法總數(shù)為________.3.某省有關(guān)部門從6人中選4人分別到A、B、C
【總結(jié)】§隨機(jī)變量的均值和方差離散型隨機(jī)變量的均值一、基礎(chǔ)過關(guān)1.若隨機(jī)變量X的概率分布如下表所示,已知E(X)=,則a-b=________.X0123Pabξ~B????n,12,η~B????n,13,且E(ξ)=15,則E(η)=________.3.籃球運(yùn)
2024-12-09 03:38
【總結(jié)】離散型隨機(jī)變量的方差與標(biāo)準(zhǔn)差一、基礎(chǔ)過關(guān)1.下列說法中,正確的是________.(填序號)①離散型隨機(jī)變量的均值E(X)反映了X取值的概率平均值;②離散型隨機(jī)變量的方差V(X)反映了X取值的平均水平;③離散型隨機(jī)變量的均值E(X)反映了X取值的平均水平;④離散型隨機(jī)變量的方差V(X)反映了X
【總結(jié)】第1章計(jì)數(shù)原理§兩個(gè)基本計(jì)數(shù)原理(一)一、基礎(chǔ)過關(guān)1.某班有男生26人,女生24人,從中選一位同學(xué)為數(shù)學(xué)科代表,則不同選法的種數(shù)為________.2.已知x∈{2,3,7},y∈{-3,-4,8},則x·y可表示不同的值的個(gè)數(shù)為________.3.某班小張等4位同
【總結(jié)】§正態(tài)分布一、基礎(chǔ)過關(guān)1.設(shè)隨機(jī)變量X服從正態(tài)分布,且相應(yīng)的概率密度函數(shù)為P(x)=16πe-x2-4x+46,則μ=__________,σ=__________.2.已知隨機(jī)變量ξ服從正態(tài)分布N(2,σ2),P(ξ≤4)=,則P(ξ0)=________.3.設(shè)隨機(jī)變量ξ
【總結(jié)】事件的獨(dú)立性一、基礎(chǔ)過關(guān)1.有以下3個(gè)問題:(1)擲一枚骰子一次,事件M:“出現(xiàn)的點(diǎn)數(shù)為奇數(shù)”,事件N:“出現(xiàn)的點(diǎn)數(shù)為偶數(shù)”;(2)袋中有5紅、5黃10個(gè)大小相同的小球,依次不放回地摸兩球,事件M:“第1次摸到紅球”,事件N:“第2次摸到紅球”;(3)分別拋擲