【總結(jié)】4二次函數(shù)的應(yīng)用第1課時,體會數(shù)學(xué)的模型思想和數(shù)學(xué)應(yīng)用價值.間的二次函數(shù)關(guān)系,并運用二次函數(shù)的知識解決實際問題.20)yaxbxca????二次函數(shù)(24,)4acba?b頂點坐標(biāo)為(-2a244acba?①當(dāng)a0時,y有最小值=②當(dāng)a
2025-06-15 02:54
【總結(jié)】第二章二次函數(shù)二次函數(shù)的應(yīng)用知識點最大利潤問題,在銷售過程中,發(fā)現(xiàn)一周利潤y(元)與每件銷售價x(元)之間的關(guān)系滿足y=-2(x-20)2+1558,由于某種原因,銷售價需滿足15≤x≤22,那么一周可獲得的最大利潤是(D),100件按批發(fā)價每件30元,每多批發(fā)10件
2025-06-18 00:31
【總結(jié)】二次函數(shù)的應(yīng)用第二章二次函數(shù)導(dǎo)入新課講授新課當(dāng)堂練習(xí)課堂小結(jié)第1課時圖形面積的最大值九年級數(shù)學(xué)下(BS)教學(xué)課件學(xué)習(xí)目標(biāo).(難點)..(重點)導(dǎo)入新課復(fù)習(xí)引入寫出下列拋物線的開口方向、對稱軸和頂點坐標(biāo).
2025-06-19 07:17
【總結(jié)】謝謝觀看Thankyouforwatching!
2025-06-13 12:13
2025-06-12 08:23
【總結(jié)】二次函數(shù)應(yīng)用y=ax2+bx2+c的圖象如圖所示,則a0,b0,c0(填“>”或“<”=.)y=ax2+bx+c與一次函數(shù)y=ax+c在同一坐標(biāo)系中的圖象大致是圖中的(),函數(shù)y=ax2+bx與y=xb的圖象大致是圖中的(),
2025-11-15 22:07
【總結(jié)】復(fù)習(xí)鞏固:1、二次函數(shù)可以用哪幾種方法表示?2、寫出下列函數(shù)的頂點坐標(biāo),并說出它的最值情況:(1)y=2x2-3x+5(2)y=-2x2+4x+3何時橙子總產(chǎn)量最大?某果園有100棵橙子樹,每一棵樹平均結(jié)600個橙子.現(xiàn)準(zhǔn)備多種一些橙子樹以提高產(chǎn)量,但是如果多種樹,那么樹之間的距離和每一棵樹所接受的陽光就會減少
2024-12-07 15:24
2025-06-13 12:12
【總結(jié)】4二次函數(shù)的應(yīng)用第2課時T恤衫銷售過程中最大利潤等問題的過程,體會二次函數(shù)是一類最優(yōu)化問題的數(shù)學(xué)模型,感受數(shù)學(xué)的應(yīng)用價值.,并運用二次函數(shù)的知識求出實際問題的最大值、最小值.(0)ka??2二次函數(shù)y=a(x-h)頂點坐標(biāo)為(h,k)①當(dāng)a0時,y有最小值k②當(dāng)a0時,y有最大值
2025-06-20 22:57
2025-06-12 08:19
【總結(jié)】二次函數(shù)的應(yīng)用(1)教材分析本節(jié)課要經(jīng)歷探索長方形和窗戶透光最大面積問題的過程,進(jìn)一步獲得利用數(shù)學(xué)方法解決實際問題的經(jīng)驗,并進(jìn)一步感受數(shù)學(xué)模型思想和數(shù)學(xué)的應(yīng)用價值.在實際背景中解決最優(yōu)化問題,不是很容易的一件事.首先,實際問題的敘述往往比較長,使人感到問題很難,其次,分析其中各個量之間的關(guān)系也不是—件輕松的事情,要想解決好這類問題
2025-11-10 04:44
【總結(jié)】銳角三角函數(shù)第1課時能力提升1.如圖,已知在Rt△ABC中,∠C=90°,BC=1,AC=2,則tanA的值為()B.C.D.Rt△ABC中,∠C=90°,若三角形的各邊都擴(kuò)大3倍,則tanA的數(shù)值()3倍3.(2021山東日照中考
2024-12-03 05:04
【總結(jié)】4二次函數(shù)的應(yīng)用第二章二次函數(shù)課堂達(dá)標(biāo)素養(yǎng)提升第二章二次函數(shù)第2課時最大利潤問題課堂達(dá)標(biāo)一、選擇題第2課時最大利潤問題1.若一種服裝的銷售利潤y(萬元)與銷售數(shù)量x(萬件)之間滿足函數(shù)表達(dá)式y(tǒng)=-2x2+4x+5,則盈利的最值情況為()A.有最
2025-06-20 16:00
【總結(jié)】第二章二次函數(shù)導(dǎo)入新課講授新課當(dāng)堂練習(xí)課堂小結(jié)第2課時商品利潤最大問題二次函數(shù)的應(yīng)用學(xué)習(xí)目標(biāo)利潤問題.(重點)值范圍.(難點)導(dǎo)入新課情境引入短片中,賣家使出渾身解數(shù)來賺錢.商品買賣過程中,作為商家利潤最大化是永恒的追求.如果你是商家
2025-06-14 02:05