【總結(jié)】第二章二次函數(shù)《確定二次函數(shù)的表達式(第2課時)》教學(xué)設(shè)計說明深圳市荔香中學(xué)陳揚彬一、學(xué)生知識狀況分析在前幾節(jié)課,學(xué)生已經(jīng)分別學(xué)習(xí)了二次函數(shù)的圖象與性質(zhì),確定二次函數(shù)的表達式(第1課時).在此基礎(chǔ)上,通過對待定系數(shù)法進一步探討二次函數(shù)的表達式的確定方法.二、教學(xué)任務(wù)分析本節(jié)課是北師大版義務(wù)教育教科書九年級(
2024-11-19 14:40
【總結(jié)】北師大版九年級下冊數(shù)學(xué)情境導(dǎo)入某超市有一種商品,進價為2元,據(jù)市場調(diào)查,銷售單價是13元時,平均每天銷售量是50件,而銷售價每降低1元,平均每天就可以多售出10件.若設(shè)降價后售價為x元,每天利潤為y元,則y與x之間的函數(shù)關(guān)系是怎樣的?本節(jié)目標(biāo)T恤衫銷售過程中最大利潤等問題的過程,體會二次函數(shù)是一類最優(yōu)化問題的數(shù)學(xué)模型
2025-06-12 01:19
【總結(jié)】北師大版九年級下冊數(shù)學(xué)20)yaxbxca????二次函數(shù)(24,)4acba?b頂點坐標(biāo)為(-2a244acba?①當(dāng)a0時,y有最小值=②當(dāng)a0時,y有最大值=244acba?二次函數(shù)的最值求法情境導(dǎo)入
2025-06-17 13:01
【總結(jié)】第二章二次函數(shù)導(dǎo)入新課講授新課當(dāng)堂練習(xí)課堂小結(jié)第2課時商品利潤最大問題二次函數(shù)的應(yīng)用學(xué)習(xí)目標(biāo)利潤問題.(重點)值范圍.(難點)導(dǎo)入新課情境引入短片中,賣家使出渾身解數(shù)來賺錢.商品買賣過程中,作為商家利潤最大化是永恒的追求.如果你是商家
2025-06-14 02:05
【總結(jié)】二次函數(shù)的應(yīng)用【教學(xué)內(nèi)容】二次函數(shù)的應(yīng)用(二)【教學(xué)目標(biāo)】知識與技能正確分析和把握利潤最大化問題的數(shù)量關(guān)系,從而得到函數(shù)關(guān)系,再求最值.過程與方法學(xué)會如何建立數(shù)學(xué)模型解決最優(yōu)化問題,并運用二次函數(shù)的知識求出實際問題的最大值、最小值.情感、態(tài)度與價值觀通過二次函數(shù)解決身邊問題,體會數(shù)學(xué)知識應(yīng)用的價值,提高學(xué)生學(xué)習(xí)數(shù)學(xué)
2024-11-19 15:45
【總結(jié)】2020--8--24二次函數(shù)的圖象與性質(zhì)(第4課時)2020/12/24我們來畫的圖象,并討論一般地怎樣畫二次函數(shù)的圖象.??20yaxbxc
2024-11-17 08:58
【總結(jié)】第二課時?由銳角的三角函數(shù)值反求銳角知識回顧?填表:已知一個角的三角函數(shù)值,求這個角的度數(shù)(逆向思維)駛向勝利的彼岸∠A=∠A=∠A=∠A=∠A=∠A=∠A=∠A=∠A=21sin?A21cos?A33tan?A03023sin?A06
2024-12-07 15:25
【總結(jié)】第二章二次函數(shù)二次函數(shù)的應(yīng)用知識點1利用二次函數(shù)求圖形面積的最值20cm,則這個直角三角形的最大面積為(B)cm2cm2cm22.用長8m的鋁合金條制成使窗戶的透光面積最大的矩形窗框(如圖),那么這個窗戶的最大透光面積是(C)A.6425m2
2025-06-18 00:33
【總結(jié)】4二次函數(shù)的應(yīng)用第1課時【基礎(chǔ)梳理】利用二次函數(shù)求幾何圖形的最大面積的基本方法(1)引入自變量.(2)用含自變量的代數(shù)式分別表示與所求幾何圖形相關(guān)的量.(3)根據(jù)幾何圖形的特征,列出其面積的計算公式,并且用函數(shù)表示這個面積.(4)根據(jù)函數(shù)關(guān)系式,求出最大值及取得最大值時自變量的值.【自我診斷】
2025-06-12 13:43
2025-06-14 06:48
【總結(jié)】?二次函數(shù)y=ax2+bx+c的圖象和x軸交點的坐標(biāo)與一元二次方程ax2+bx+c=0的根有什么關(guān)系?二次函數(shù)y=ax2+bx+c的圖象和x軸交點一元二次方程ax2+bx+c=0的根一元二次方程ax2+bx+c=0根的判別式b2-4ac有兩個交點有兩個相異的實數(shù)根b2-4ac0有一個交點有兩個相等的實數(shù)
2024-11-17 00:01
【總結(jié)】1第二章二次函數(shù)《二次函數(shù)的應(yīng)用(第2課時)》教學(xué)設(shè)計說明廣東省深圳市鹽田區(qū)田東中學(xué)劉靜一、學(xué)生知識狀況分析通過本章前三節(jié)的學(xué)習(xí),學(xué)生已對二次函數(shù)的概念、二次函數(shù)的圖像及其性質(zhì)、如何確定二次函數(shù)的解析式等問題有了明確的認(rèn)識.二次函數(shù)應(yīng)用的第一課時是“何時面積最大”,學(xué)生初步感受到數(shù)學(xué)模型思想
2024-11-21 01:20
【總結(jié)】4二次函數(shù)的應(yīng)用第2課時T恤衫銷售過程中最大利潤等問題的過程,體會二次函數(shù)是一類最優(yōu)化問題的數(shù)學(xué)模型,感受數(shù)學(xué)的應(yīng)用價值.,并運用二次函數(shù)的知識求出實際問題的最大值、最小值.(0)ka??2二次函數(shù)y=a(x-h)頂點坐標(biāo)為(h,k)①當(dāng)a0時,y有最小值k②當(dāng)a0時,y有最大值
2025-06-20 22:57
2025-06-20 17:31