【總結(jié)】導(dǎo)數(shù)的概念與運(yùn)算第1題.()fx?是31()213fxxx???的導(dǎo)函數(shù),則(1)f??的值是答案:3第2題.已知二次函數(shù)2()fxaxbxc???的導(dǎo)數(shù)為()fx?,(0)0f??,對于任意實數(shù)x,有()0fx≥,則(1)(0)ff?的最小值為
2024-11-30 14:39
【總結(jié)】函數(shù)的極值與導(dǎo)數(shù)(a,b)內(nèi),如果,那么函數(shù)在這個區(qū)間內(nèi)單調(diào)遞增;如果,那么函數(shù)在這個區(qū)間內(nèi)單調(diào)遞減.0)(??xf)(xfy?0)(??xf)(xfy?2.對x∈(a,b),如果
2024-11-18 12:13
【總結(jié)】函數(shù)的最大(小)值與導(dǎo)數(shù)21、函數(shù)的極值設(shè)函數(shù)f(x)在點x0附近有定義,?如果對X0附近的所有點,都有f(x)f(x0),則f(x0)是函數(shù)f(x)的一個極小值,
2024-11-17 12:01
【總結(jié)】知識回顧導(dǎo)數(shù)的幾何意義:(瞬時速度或瞬時加速度)物理意義:曲線在某點處的切線的斜率;物體在某一時刻的瞬時度。由定義求導(dǎo)數(shù)(三步法)步驟:);()()1(xfxxfy?????求增量;)()()2(xxfxxfxy???????算比值)(,0)3(xfxyx??????當(dāng)如
2024-11-18 08:46
【總結(jié)】導(dǎo)數(shù)的實際應(yīng)用【教學(xué)目標(biāo)】利用導(dǎo)數(shù)解決實際問題中的最優(yōu)化問題,掌握建立數(shù)學(xué)模型的方法,形成求解優(yōu)化問題的思路和方法.【教學(xué)重點】實際問題中的導(dǎo)數(shù)應(yīng)用【教學(xué)難點】數(shù)學(xué)建模一、課前預(yù)習(xí)::31頁例1、例2,總結(jié)利用導(dǎo)數(shù)解決生活中的優(yōu)化問題的一般步驟:例1有一塊邊長為a的正方形鐵板,現(xiàn)從鐵板的四個角各截去一個相同的小正方
2024-12-03 11:30
【總結(jié)】為常數(shù))????(x)x)(2(1'??1)a0,lna(aa)a)(3(x'x???且1)a,0a(xlna1)xlog)(4('a???且sinx(8)(cosx)'??e)e)(5(x'x?x1(6)(lnx)'
【總結(jié)】利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性【教學(xué)目標(biāo)】了解并掌握函數(shù)單調(diào)性的定義以及導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,會利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,會利用導(dǎo)數(shù)畫出函數(shù)的大致圖像?!窘虒W(xué)重點】利用導(dǎo)數(shù)求單調(diào)區(qū)間【教學(xué)難點】導(dǎo)數(shù)與單調(diào)性的關(guān)系一、課前預(yù)習(xí)(閱讀教材24--25頁,填寫知識點.):怎樣判斷函數(shù)的單調(diào)性?1、__________2、__
【總結(jié)】山東省泰安市肥城市第三中學(xué)高中數(shù)學(xué)變化率問題與導(dǎo)數(shù)的概念學(xué)案新人教A版選修2-2學(xué)習(xí)內(nèi)容學(xué)習(xí)指導(dǎo)即時感悟【學(xué)習(xí)目標(biāo)】1.理解平均變化率與導(dǎo)數(shù)的概念;了解平均變化率的幾何意義、瞬時速度、瞬時變化率的概念;會求函數(shù)在某點處附近的平均變化率及導(dǎo)數(shù)。,推出導(dǎo)數(shù)的概念,理解導(dǎo)數(shù)的內(nèi)涵。?!緦W(xué)習(xí)重點】平均變化
2024-11-19 17:30
【總結(jié)】湖南省邵陽市隆回二中選修2-2學(xué)案導(dǎo)數(shù)及其應(yīng)用:1.1.2導(dǎo)數(shù)的概念導(dǎo)學(xué)案【學(xué)習(xí)目標(biāo)】1.了解瞬時速度、瞬時變化率的概念;2.理解導(dǎo)數(shù)的概念,知道瞬時變化率就是導(dǎo)數(shù),體會導(dǎo)數(shù)的思想及其內(nèi)涵;3.會求函數(shù)在某點的導(dǎo)數(shù)。【自主學(xué)習(xí)】(認(rèn)真自學(xué)課本P4-6)探究一:瞬時速度:問題1:我們把物體在某一時刻的
2024-11-19 20:35
【總結(jié)】1導(dǎo)數(shù)的運(yùn)算.2常數(shù)函數(shù)與冪函數(shù)的導(dǎo)數(shù)3???,,.,,如何求它的導(dǎo)數(shù)呢數(shù)對于函那么度體在某一時刻的瞬時速物理意義是運(yùn)動物點處的切線的斜率在某導(dǎo)數(shù)的幾何意義是曲線我們知道xfy???.,,,個定值所趨于的那時趨近于就是求出當(dāng)?shù)膶?dǎo)數(shù)求函數(shù)根據(jù)函數(shù)的定義xyxxfy?
2024-11-18 01:21
【總結(jié)】定義:函數(shù)y=f(x)在x=x0處的瞬時變化率是0000()()li.mlimxxfxxfxyxx???????????,|)(00xxyxf???或00000()()()limlim.xxfxxfxyfxxx????
【總結(jié)】導(dǎo)數(shù)的概念2121f(x)-f(x)y=xx-x11f(x+x)-f(x)=x復(fù)習(xí)割線AB的斜率3、在高臺跳水運(yùn)動中,運(yùn)動員相對于水面的高度h(單位:米)與起跳后的時間t(單位:秒)存在函數(shù)關(guān)系h(t)=++10.
2024-11-17 12:02
【總結(jié)】1.1.2導(dǎo)數(shù)的概念一.創(chuàng)設(shè)情景(一)平均變化率(二)探究:在高臺跳水運(yùn)動中,平均速度不能反映他在這段時間里運(yùn)動狀態(tài),需要用瞬時速度描述運(yùn)動狀態(tài)。我們把物體在某一時刻的速度稱為瞬時速度.又如何求瞬時速度呢????,?,.).tan(.,時的瞬時速度是多少比如
【總結(jié)】變化率問題一個變量相對于另一個變量的變化而變化的快慢程度叫做變化率.問題1氣球膨脹率我們都吹過氣球回憶一下吹氣球的過程,可以發(fā)現(xiàn),隨著氣球內(nèi)空氣容量的增加,氣球的半徑增加越來越慢.從數(shù)學(xué)角度,如何描述這種現(xiàn)象呢?問題1氣球膨脹率
【總結(jié)】12???,??th,.,at,,規(guī)律導(dǎo)數(shù)的符號有什么變化地相應(yīng)特點此點附近的圖象有什么是多少呢在此點的導(dǎo)數(shù)函數(shù)那么距水面的高度最大高臺跳水運(yùn)動員時我們發(fā)現(xiàn)觀察圖?thOa?圖??0th'?單調(diào)遞增??0th'?單調(diào)遞減??0ah'??圖.,值的過程形象解釋
2024-11-18 15:24