【總結(jié)】第一篇:巧用數(shù)學(xué)歸納法證明不等式 巧用數(shù)學(xué)歸納法證明不等式 數(shù)學(xué)歸納法是解決與正整數(shù)有關(guān)的命題的數(shù)學(xué)方法,它是通過(guò)有限個(gè)步驟的推理,證明n取無(wú)限個(gè)正整數(shù)的情形。 第一步是證明n取第一個(gè)值n0時(shí)命...
2024-11-06 00:31
【總結(jié)】選修4--5不等式選講一、課程目標(biāo)解讀??選修系列4-5專題不等式選講,內(nèi)容包括:不等式的基本性質(zhì)、含有絕對(duì)值的不等式、不等式的證明、幾個(gè)著名的不等式、利用不等式求最大(?。┲怠?shù)學(xué)歸納法與不等式。通過(guò)本專題的教學(xué),使學(xué)生理解在自然界中存在著大量的不等量關(guān)系和等量關(guān)系,不
2025-04-16 13:22
【總結(jié)】2020/12/24授課人:陳曉琳2020/12/24一、知識(shí)聯(lián)系1、絕對(duì)值的定義|x|=x,x0-x,x0-x
2024-11-17 12:00
【總結(jié)】一般形式的柯西不等式二????.,,,,,是三維的形式空間向量的坐標(biāo)是二維形式平面上向量坐標(biāo)我們知道zyxyx?,,么結(jié)論呢關(guān)于柯西不等式會(huì)有什問(wèn)題從三維的角度思考聯(lián)系前一節(jié)的內(nèi)容思考xyo???21aa,???11bb,?xyo???321aaa,,???311bbb,,?
【總結(jié)】第一篇:數(shù)學(xué)歸納法證明不等式教案 § 學(xué)習(xí)目標(biāo):、數(shù)學(xué)歸納法證明基本步驟; 、難點(diǎn):、知識(shí)情景: (相當(dāng)于多米諾骨牌),我們可以采用下面方法來(lái)證明其正確性: (即n=no時(shí)命題成立)(歸納奠...
2024-10-29 04:04
【總結(jié)】不等關(guān)系與不等式同步測(cè)試【基礎(chǔ)練習(xí)】1.一個(gè)工程隊(duì)規(guī)定要在6天內(nèi)完成300土方的工程,第一天完成了60土方,現(xiàn)在要比原計(jì)劃至少提前兩天完成任務(wù),則以后幾天平均每天至少要完成的土方數(shù)x應(yīng)滿足的不等式為。2.限速40km∕h的路標(biāo),指示司機(jī)在前方路段行駛時(shí),應(yīng)使汽車的速度v不超過(guò)40km∕h,寫成
2024-12-02 10:14
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》選修2-2《數(shù)學(xué)歸納法》教學(xué)目標(biāo)?了解數(shù)學(xué)歸納法的原理,能用數(shù)學(xué)歸納法證明一些簡(jiǎn)單的數(shù)學(xué)命題。?教學(xué)重點(diǎn):?了解數(shù)學(xué)歸納法的原理第一課時(shí)一、歸納法對(duì)于某類事物,由它的一些特殊事例或其全部可能情況,歸納出一般結(jié)論的推理方法,叫歸納法。歸納法{
2024-11-17 17:34
【總結(jié)】不完全歸納的作用在于發(fā)現(xiàn)規(guī)律,探求結(jié)論,但結(jié)論是否為真有待證明,因而數(shù)學(xué)中我們常用歸納——猜想——證明的方法來(lái)解決與正整數(shù)有關(guān)的歸納型和存在型問(wèn)題.[例1]設(shè)數(shù)列{an}滿足an+1=a2n-nan+1,n=1,2,3,?(1)當(dāng)a1=2時(shí),求a2,a3
2025-01-15 08:43
【總結(jié)】人教版高中數(shù)學(xué)選修4-5(不等式)課后習(xí)題答案(截取自教師用書)(1)14
2025-07-22 18:43
【總結(jié)】《基本不等式》同步測(cè)試一、選擇題,本大題共10小題,每小題4分,滿分40分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1.若a?R,下列不等式恒成立的是()A.21aa??B.2111a??C.296aa??D.2lg(1)lg|2|aa??
2024-11-15 21:17
【總結(jié)】第一篇:高中數(shù)學(xué)《數(shù)學(xué)歸納法》學(xué)案1新人教A版選修2-2 數(shù)學(xué)歸納法的典型例題分析 例1用數(shù)學(xué)歸納法證明等式 時(shí)所有自然數(shù)都成立。 證明(1)當(dāng) (2)假設(shè)當(dāng) 時(shí),左式,右式 時(shí)等式成立...
2024-11-08 17:00
【總結(jié)】第一篇:歸納法證明不等式 歸納法證明不等式 由于lnx0則x 1設(shè)f(x)=x-lnxf'(x)=1-1/x0 則f(x)為增函數(shù)f(x)f(1)=1 則xlnx 則可知道等式成...
2024-10-28 02:13
【總結(jié)】第三章不等式課題:§不等式與不等關(guān)系第1課時(shí)授課類型:新授課【教學(xué)目標(biāo)】1.知識(shí)與技能:通過(guò)具體情景,感受在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,理解不等式(組)的實(shí)際背景,掌握不等式的基本性質(zhì);2.過(guò)程與方法:通過(guò)解決具體問(wèn)題,學(xué)會(huì)依據(jù)具體問(wèn)題的實(shí)際背景分析問(wèn)題、解決問(wèn)題的方法;3.情態(tài)與
2024-11-19 20:24
【總結(jié)】(第一課時(shí))單縣一中時(shí)克然多米諾骨牌問(wèn)題情境一已知數(shù)列的通項(xiàng)公式為}{na22)55(???nnan(1)求出其前四項(xiàng),你能得到什么樣的猜想?(2)你的猜想正確嗎?對(duì)于數(shù)列{},na)1(2111????nnnaaa)∈(*Nn
2024-11-17 12:01
【總結(jié)】選修4-5不等式選講水平測(cè)試題一、選擇題:(本大題共12小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的).a(chǎn),b是任意的實(shí)數(shù),且ab,則()(A)22ba?(B)1?ab(C)lg(a-b)0
2025-01-09 16:02