【總結(jié)】課題:向量的減法班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】1、理解向量減法的含義;2、能用三角形法則和平行四邊形法則求出兩向量的差;【課前預(yù)習(xí)】1、如何用向量加法的三角形法則和平行四邊形法則作兩向量的和?2、??ABOA;???CA
2024-11-20 01:05
【總結(jié)】自學(xué)目標(biāo)1、在理解向量共線的概念的基礎(chǔ)上,學(xué)習(xí)用坐標(biāo)表示向量共線的條件。2、利用向量共線的坐標(biāo)表示解決有關(guān)問題。學(xué)習(xí)過程一、課前準(zhǔn)備(預(yù)習(xí)教材103頁~104頁,找出疑惑之處)二、新課導(dǎo)學(xué)1、若//(0)abb?則存在唯一實(shí)數(shù)?使;反之,若存在唯一實(shí)數(shù)?,使,則//
2024-11-27 23:46
【總結(jié)】§2.平面向量共線的坐標(biāo)表示【學(xué)習(xí)目標(biāo)、細(xì)解考綱】1、在理解向量共線的概念的基礎(chǔ)上,學(xué)習(xí)用坐標(biāo)表示向量共線的條件。2、利用向量共線的坐標(biāo)表示解決有關(guān)問題?!局R(shí)梳理、雙基再現(xiàn)】1、兩向量平行(共線)的條件若//(0)abb?則存在唯一實(shí)數(shù)使//ab?;反之,存在唯一實(shí)數(shù)?。使//
2024-11-30 13:46
【總結(jié)】2.1.5向量共線條件與軸上向量坐標(biāo)運(yùn)算一、學(xué)習(xí)要點(diǎn):?jiǎn)挝幌蛄?、軸上向量坐標(biāo)運(yùn)算、共線定理應(yīng)用二、學(xué)習(xí)過程:(一)復(fù)習(xí)引入:1.向量的表示方法2.向量的加法,減法及運(yùn)算律3.實(shí)數(shù)與向量的乘法(向量數(shù)乘)4.向量共線定理(二)講解新課:1.單位向量給定一個(gè)非零向量a,與a同方向且長(zhǎng)度等于的單位向量叫
2024-11-18 16:44
【總結(jié)】陜西省榆林育才中學(xué)高中數(shù)學(xué)第2章《平面向量》7平面向量的坐標(biāo)(2)導(dǎo)學(xué)案北師大版必修4使用說明1.課前根據(jù)學(xué)習(xí)目標(biāo),認(rèn)真閱讀課本內(nèi)容,完成預(yù)習(xí)引導(dǎo)的全部?jī)?nèi)容.,課堂上積極討論,大膽展示,完成合作探究部分.學(xué)習(xí)目標(biāo)1.理解用坐標(biāo)表示的平面向量共線的條件.2.會(huì)根據(jù)向量的坐標(biāo),判斷向量是否平行.學(xué)習(xí)重點(diǎn)
2024-11-19 23:19
【總結(jié)】及坐標(biāo)表示(第2課時(shí))學(xué)習(xí)目標(biāo):(3)會(huì)根據(jù)向量的坐標(biāo),判斷向量是否共線.(1)理解平面向量的坐標(biāo)的概念;(2)掌握平面向量的坐標(biāo)運(yùn)算;兩個(gè)非零向量平行(共線)的充要條件????1122,,,(0)axybxyb???設(shè)當(dāng)且僅當(dāng)存在實(shí)數(shù),使?ba??//ab
2024-11-18 08:49
【總結(jié)】課題:向量的數(shù)乘(1)班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】1、理解向量數(shù)乘的含義,掌握向量數(shù)乘的運(yùn)算律;2、理解數(shù)乘的運(yùn)算律與實(shí)數(shù)乘法的運(yùn)算律的區(qū)別與聯(lián)系。【課前預(yù)習(xí)】1、質(zhì)點(diǎn)從點(diǎn)O出發(fā)做勻速直線運(yùn)動(dòng),若經(jīng)過s1的位移對(duì)應(yīng)的向量用a?表示,那么在同方
2024-12-05 00:28
【總結(jié)】復(fù)習(xí)1、平面向量基本定理的內(nèi)容是什么?2、什么是平面向量的基底?如果e1,e2是同一平面內(nèi)的兩個(gè)不共線的向量,那么對(duì)于這一平面內(nèi)的任一向量a,有且只有一對(duì)實(shí)數(shù)λ1,λ2使得a=λ1e1+λ2e2平面向量基本定理:不共線的平面向量e1,e2叫做這一平面內(nèi)所有向量的一組基底.
2024-11-17 17:33
【總結(jié)】a?Ab?BCba???a?a?Ab?Bb?OCba???特點(diǎn):首尾相接特點(diǎn):共起點(diǎn)bBaABAab??:O特點(diǎn):共起點(diǎn):::向量與非零向量共線當(dāng)且僅當(dāng)有唯一一個(gè)實(shí)數(shù),使得ab
2024-11-17 19:47
【總結(jié)】?1.平面向量共線的坐標(biāo)表示?設(shè)a=(x1,y1),b=(x2,y2),則a∥b?.?2.下列各組向量中,共線的是?()?A.a(chǎn)=(-1,2),b=(3,5)?B.a(chǎn)=(1,2),b=(2,1)?C.a(chǎn)=(2,-1),b=(3,4)?D.a(chǎn)=(-2,1
2025-08-05 18:26
【總結(jié)】第二章平面向量平面向量的基本定理及坐標(biāo)表示平面向量共線的坐標(biāo)表示1.通過實(shí)例了解如何用坐標(biāo)表示兩個(gè)共線向量,以及兩直線平行與兩向量共線的判定.(易混點(diǎn))2.理解用坐標(biāo)表示的平面向量共線的條件,并會(huì)應(yīng)用.(重點(diǎn))3.會(huì)根據(jù)平面向量的坐標(biāo)判斷向量是否共線.(難點(diǎn))1.平面向量共線的坐標(biāo)表示2
2024-11-19 19:09
【總結(jié)】Oxya引入:,點(diǎn)A可以用什么來表示??OxyA(a,b)aba:如果e1,e2是同一平面內(nèi)的兩個(gè)不共線的向量,那么對(duì)于這一平面內(nèi)的任一向量a,有且只有一對(duì)實(shí)數(shù)λ1,λ2使得a=λ1e1+λ2e2.不共線的兩向量e1,e2叫做這一平面內(nèi)所
2024-11-17 15:05
【總結(jié)】平面向量共線的坐標(biāo)表示一、求點(diǎn)P分有向線段所成的比的幾種求法(1)定義法:根據(jù)已知條件直接找到使PP1=λ2PP的實(shí)數(shù)λ的值.例1已知點(diǎn)A(-2,-3),點(diǎn)B(4,1),延長(zhǎng)AB到P,使|AP|=3|PB|,求點(diǎn)P的坐標(biāo).解:因?yàn)辄c(diǎn)在AB的延長(zhǎng)線上,P為AB的外分點(diǎn),所以AP=λPB,λ0
2024-11-19 17:32
【總結(jié)】§平面向量數(shù)量積的運(yùn)算律(課前預(yù)習(xí)案)班級(jí):___姓名:________編寫:一、新知導(dǎo)學(xué)1.交換律:a?b=;2.?dāng)?shù)乘結(jié)合律:(?a)?b==;3.分配律:(a+b)?c=.說明
2024-11-27 23:43
【總結(jié)】"【志鴻全優(yōu)設(shè)計(jì)】2021-2021學(xué)年高中數(shù)學(xué)平面向量線性運(yùn)算的坐標(biāo)表示課后訓(xùn)練北師大版必修4"1.已知a=(1,1),b=(1,-1),則向量1322?ab等于().A.(-2,-1)B.(-2,1)C.(-1,0)D.(-1,2)2.若AB
2024-12-03 03:14